Modicon X80 Discrete Input/Output Modules User Manual

Original instructions

10/2019

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

You agree not to reproduce, other than for your own personal, noncommercial use, all or part of this document on any medium whatsoever without permission of Schneider Electric, given in writing. You also agree not to establish any hypertext links to this document or its content. Schneider Electric does not grant any right or license for the personal and noncommercial use of the document or its content, except for a non-exclusive license to consult it on an "as is" basis, at your own risk. All other rights are reserved.

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2019 Schneider Electric. All rights reserved.

Table of Contents

Part I Chapter 1	Safety Information
	General Description of the Modules
	Physical Description of Discrete Modules with 20-pin Terminal Block Connection
	Physical Description of Discrete Modules with 40-pin Terminal Block
	Connection
	Physical Description of Discrete Modules with 40-Pin Connectors
	Discrete Input Modules Catalog
	Discrete Output Modules Catalog
	Discrete Mixed Input/Output Modules Catalog
	Temperature Derating
	Standards and Certifications
Chapter 2	General Rules for Installing the Modules
	Fitting of the Modules
	20-pin Terminal Blocks: BMX FTB 20•0
	40-pin Terminal Blocks: BMX FTB 40•0
	BMX FTW ••1 Cable
	BMX FTW ••5 Cable
	Fitting a 20-pin Terminal Block to a Module
	Fitting a 40-Pin Terminal Block to a Module
	Fitting a 40-pin FCN Type Connector to a Module
	Presentation for Choosing Power Supplies for Sensors and Pre-
	Actuators
	How to Connect Discrete Input/Output Modules: Connecting 40-Pin Connector Modules
	How to Connect Discrete Input/Output Modules: Connecting 40-Pin Connector Modules to TELEFAST Interfaces

Chapter 3	Discrete Input/Output Module Diagnostic Processing General Protective Measures	95 96
	Module and Channel Status Display	97
	Diagnostics	102
	Checking the Connection	106
Chapter 4	BMX DDI 1602 Input Modules	109
	Introduction	110
	Characteristics	111
	Connecting the Module	113
Chapter 5	BMX DDI 1603 Input Modules	117
•	Introduction	118
	Characteristics	119
	Connecting the Module	121
Chapter 6	BMX DDI 1604T Input Modules	125
•	Introduction	126
	Characteristics	127
	Connecting the Module	130
Chapter 7	BMX DAI 1602 Input Modules	135
-	Introduction	136
	Characteristics	137
	Connecting the Module	139
Chapter 8	BMX DAI 1603 Input Modules	145
	Introduction	146
	Characteristics	147
	Connecting the Module	149
Chapter 9	BMX DAI 1604 Input Modules	153
	Introduction	154
	Characteristics	155
	Connecting the Module	157
Chapter 10	BMX DAI 1614 Input Modules	161
	Introduction	162
	Characteristics	163
	Connecting the Module	165
Chapter 11	BMX DAI 1615 Input Modules	171
	Introduction	172
	Characteristics	173
	Connecting the Module	175

Chapter 12	BMX DAI 0805 Input Modules	181 182
	Characteristics	183
	Connecting the Module	185
Chapter 13	BMX DAI 0814 Input Module	189
Chapter 13	Introduction	190
	Characteristics	191
	Connecting the Module	193
Chapter 14	BMX DDI 3202 K Input Modules	197
Chapter 14	Introduction	198
	Characteristics	199
	Connecting the Module	201
Chapter 15	BMX DDI 6402 K Input Modules	205
Chapter 13	Introduction	206
	Characteristics	207
	Connecting the Module	209
Chapter 16	BMX DDO 1602 Static Output Modules	213
Onapter 10	Introduction	214
	Characteristics	215
	Connecting the Module	217
Chapter 17	BMX DDO 1612 Static Output Modules	221
onapio	Introduction	222
	Characteristics	223
	Connecting the Module	225
Chapter 18	BMX DRA 0804T Relay Output Modules	229
	Introduction	230
	Characteristics	231
	Connecting the Module	233
Chapter 19	BMX DRA 0805 Relay Output Modules	237
•	Introduction	238
	Characteristics	239
	Connecting the Module	242
Chapter 20	BMX DRA 0815 Relay Output Modules	245
-	Introduction	246
	Characteristics	247
	Connecting the Module	250

35012474 10/2019 5

Chapter 21	BMX DRA 1605 Relay Output Modules
	Characteristics
	Connecting the Module
Chapter 22	BMX DRC 0805 Relay Output Modules
Chaptor 22	Introduction
	Characteristics
	Connecting the Module
Chapter 23	BMX DDO 3202 K Static Output Modules
5a.p.155	Introduction
	Characteristics
	Connecting the Module
Chapter 24	BMX DDO 6402 K Static Output Modules
•	Introduction
	Characteristics
	Connecting the Module
Chapter 25	BMX DAO 1605 Triac Output Modules
•	Introduction
	Characteristics
	Connecting the Module
Chapter 26	BMX DAO 1615 Isolated Triac Output Modules
	Characteristics
	Connecting the Module
Chapter 27	BMX DDM 16022 Mixed Static Input/Output Module
-	Introduction
	Characteristics
	Connecting the Module
Chapter 28	BMX DDM 16025 Mixed Relay Input/Output module
	Introduction
	Characteristics
	Connecting the Module
Chapter 29	BMX DDM 3202 K Mixed Static Input/Output Module Introduction
	Characteristics
	Connecting the Module

Chapter 30	TELEFAST 2 Connection Interface Links for the Discrete
30.1	I/O Modules
30.1	General Overview of TELEFAST 2 Connection Interfaces for Discrete
	I/O Modules
	TELEFAST 2 Connection Bases Catalog
	Combination of Discrete I/O Modules and TELEFAST 2 Connection
	Bases
30.2	Connection Principles for the TELEFAST 2 Interfaces for Discrete I/O
	Connecting a Discrete Input/Output Module to a TELEFAST 2 Base Interface
	Dimensions and Mounting of the TELEFAST 2 Connection Bases
30.3	TELEFAST 2 ABE-7H08R10/08R11 and ABE-7H16R10/16R11
00.0	Connection Bases
	Sensor and Pre-actuator Connections on the ABE-7H08R10/R11 and
	ABE-7H16R10/R11 Bases
30.4	TELEFAST 2 ABE-7H12R10/12R11 Connection Bases
	Sensor and Pre-actuator Connections on the ABE-7H12R10/R11
30.5	Bases TELEFAST 2 ABE-7H08R21 and ABE-7H16R20/16R21/16R23
00.0	Connection Bases
	Sensor and Pre-actuator Connections on the ABE-7H08R21 and ABE-
	7H16R20/R21/R23 Bases for Type 2 Inputs
30.6	TELEFAST 2 ABE-7H12R20/12R21 Connection Bases
	Sensor and Pre-actuator Connections on the ABE-7H12R20/12R21 Bases.
30.7	TELEFAST 2 ABE-7H08S21/16S21 Connection Bases
00.1	Sensor and Pre-actuator Connections on ABE-7H08S21/16S21 Bases
	with One Isolator per Channel
30.8	TELEFAST 2 ABE-7H12S21 Connection Base
	Sensor and Pre-actuator Connections on the ABE-7H12S21 Base with
20.0	1 Isolator per Channel
30.9	TELEFAST 2 ABE-7H16R30/16R31 Connection Bases
	Sensor and Pre-actuator Connections on the ABE-7H16R30/R31 Bases
30.10	TELEFAST 2 ABE-7H12R50 Connection Base
	Sensor and Pre-actuator Connections on the ABE-7H12R50 Bases .
30.11	TELEFAST 2 ABE-7H16R50 Connection Base
	Sensor and Actuator Connections on the ABE-7H16R50 Base
30.12	TELEFAST 2 ABE-7H16F43 Connection Base
	Actuator Connections on ABE-7H16F43 Output Base with One Fuse
	and One isolator per Channel

35012474 10/2019 7

30.13	TELEFAST 2 ABE-7H16S43 Connection Base
	Sensor Connections on ABE-7H16S43 Output Base with One Fuse
	and One Isolator per Channel
30.14	TELEFAST 2 Connection Base Accessories
	TELEFAST 2 Connection Base Accessories Catalog
	Association Table for the Relays on ABE-7R16Txxx, ABE-7P16Txxx
	and ABE-7P16Fxxx Bases
	Relays
	Characteristics of the Removable ABS-7Exx Static input Relays
	Characteristics of the Removable ABS-7Sxx Static Output Relays
Part II	Discrete Input/Output Modules Software
	Implementation
Chapter 31	General Introduction to the Application-Specific Discrete
оа.р.о. о .	Function
	Overview
Chapter 32	Configuration
32.1	Configuration of a Discrete Module: General Points
	Discrete Module Configuration Screen in Modicon Mx80 local rack
	Discrete Module Configuration Screen in X80 Drop
32.2	Discrete Input and Output Channel Parameters
	Discrete Input Parameters on the Rack
	Discrete Output Parameters for 8-Channel Modules in Rack
32.3	Configuration of Discrete Module Parameters
	How to Modify the Task Parameter
	How to Modify the External Power Supply Error Monitoring Parameter
	How to Modify the Fallback Mode Parameter
	How to Modify the Output Reset Parameter
Chapter 33	Application-Specific Discrete Module Language Objects
33.1	Language Objects and IODDT
	Description of the Discrete Function Objects Languages
33.2	Discrete Module IODDTs and Device DDTs
	IODDT Links
	Details About T_DIS_IN_GEN Type IODDT Implicit Object Exchange
	Details About T_DIS_IN_STD Type IODDT Implicit Object Exchange.
	Details About T_DIS_IN_STD Type IODDT Explicit Object Exchange
	Details About T_DIS_OUT_GEN Type IODDT Implicit Object
	Exchange
	Details About T DIS OUT STD Type IODDT Implicit Object Exchange

	Details About T_DIS_OUT_STD Type IODDT Explicit Object Exchange
	Details of the Language Objects of the IODDT of Type T_GEN_MOD
	Modicon X80 Discrete I/O Module Configuration Constants
	Discrete Device DDT Names
	MOD_FLT Byte Description
Chapter 34	Debugging
	Introduction to the Debugging Function of a Discrete Module
	Debugging Screen
	How to Access the Forcing/Unforcing Function
	How to Access the SET and RESET Commands
	How to Access the Reactivation of Outputs Command
	Applied Outputs of a Discrete Module
Chapter 35	Diagnostics of the Modules
	How to Access the Diagnostics Function
	How to Access the Channel Diagnostics Function of a Discrete Module
Appendices	
Appendix A	Topological/State RAM Addressing of the Modules
	Topological/State RAM Addressing of ModiconX80 Discrete Modules
Glossary	
Index	

10 35012474 10/2019

Safety Information

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

A DANGER

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

WARNING indicates a hazardous situation which, if not avoided, **could result in** death or serious injury.

CAUTION

CAUTION indicates a hazardous situation which, if not avoided, **could result** in minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

BEFORE YOU BEGIN

Do not use this product on machinery lacking effective point-of-operation guarding. Lack of effective point-of-operation guarding on a machine can result in serious injury to the operator of that machine.

▲ WARNING

UNGUARDED EQUIPMENT

- Do not use this software and related automation equipment on equipment which does not have point-of-operation protection.
- Do not reach into machinery during operation.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

This automation equipment and related software is used to control a variety of industrial processes. The type or model of automation equipment suitable for each application will vary depending on factors such as the control function required, degree of protection required, production methods, unusual conditions, government regulations, etc. In some applications, more than one processor may be required, as when backup redundancy is needed.

Only you, the user, machine builder or system integrator can be aware of all the conditions and factors present during setup, operation, and maintenance of the machine and, therefore, can determine the automation equipment and the related safeties and interlocks which can be properly used. When selecting automation and control equipment and related software for a particular application, you should refer to the applicable local and national standards and regulations. The National Safety Council's Accident Prevention Manual (nationally recognized in the United States of America) also provides much useful information.

In some applications, such as packaging machinery, additional operator protection such as pointof-operation guarding must be provided. This is necessary if the operator's hands and other parts of the body are free to enter the pinch points or other hazardous areas and serious injury can occur. Software products alone cannot protect an operator from injury. For this reason the software cannot be substituted for or take the place of point-of-operation protection.

12 35012474 10/2019

Ensure that appropriate safeties and mechanical/electrical interlocks related to point-of-operation protection have been installed and are operational before placing the equipment into service. All interlocks and safeties related to point-of-operation protection must be coordinated with the related automation equipment and software programming.

NOTE: Coordination of safeties and mechanical/electrical interlocks for point-of-operation protection is outside the scope of the Function Block Library, System User Guide, or other implementation referenced in this documentation.

START-UP AND TEST

Before using electrical control and automation equipment for regular operation after installation, the system should be given a start-up test by qualified personnel to verify correct operation of the equipment. It is important that arrangements for such a check be made and that enough time is allowed to perform complete and satisfactory testing.

A WARNING

EQUIPMENT OPERATION HAZARD

- Verify that all installation and set up procedures have been completed.
- Before operational tests are performed, remove all blocks or other temporary holding means used for shipment from all component devices.
- Remove tools, meters, and debris from equipment.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Follow all start-up tests recommended in the equipment documentation. Store all equipment documentation for future references.

Software testing must be done in both simulated and real environments.

Verify that the completed system is free from all short circuits and temporary grounds that are not installed according to local regulations (according to the National Electrical Code in the U.S.A, for instance). If high-potential voltage testing is necessary, follow recommendations in equipment documentation to prevent accidental equipment damage.

Before energizing equipment:

- Remove tools, meters, and debris from equipment.
- Close the equipment enclosure door.
- Remove all temporary grounds from incoming power lines.
- Perform all start-up tests recommended by the manufacturer.

OPERATION AND ADJUSTMENTS

The following precautions are from the NEMA Standards Publication ICS 7.1-1995 (English version prevails):

- Regardless of the care exercised in the design and manufacture of equipment or in the selection and ratings of components, there are hazards that can be encountered if such equipment is improperly operated.
- It is sometimes possible to misadjust the equipment and thus produce unsatisfactory or unsafe operation. Always use the manufacturer's instructions as a guide for functional adjustments.
 Personnel who have access to these adjustments should be familiar with the equipment manufacturer's instructions and the machinery used with the electrical equipment.
- Only those operational adjustments actually required by the operator should be accessible to the operator. Access to other controls should be restricted to prevent unauthorized changes in operating characteristics.

About the Book

At a Glance

Document Scope

This manual describes the hardware and software installation of Modicon X80 discrete modules.

Validity Note

This documentation is valid for EcoStruxure™ Control Expert 14.1 or later.

The technical characteristics of the devices described in the present document also appear online. To access the information online:

Step	Action
1	Go to the Schneider Electric home page www.schneider-electric.com.
2	 In the Search box type the reference of a product or the name of a product range. Do not include blank spaces in the reference or product range. To get information on grouping similar modules, use asterisks (*).
3	If you entered a reference, go to the Product Datasheets search results and click on the reference that interests you. If you entered the name of a product range, go to the Product Ranges search results and click on the product range that interests you.
4	If more than one reference appears in the Products search results, click on the reference that interests you.
5	Depending on the size of your screen, you may need to scroll down to see the datasheet.
6	To save or print a datasheet as a .pdf file, click Download XXX product datasheet .

The characteristics that are presented in the present document should be the same as those characteristics that appear online. In line with our policy of constant improvement, we may revise content over time to improve clarity and accuracy. If you see a difference between the document and online information, use the online information as your reference.

35012474 10/2019 15

Related Documents

Title of documentation	Reference number
Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications	EIO000002726 (English), EIO0000002727 (French), EIO0000002728 (German), EIO0000002730 (Italian), EIO0000002729 (Spanish), EIO0000002731 (Chinese)
EcoStruxure™ Control Expert, Operating Modes	33003101 (English), 33003102 (French), 33003103 (German), 33003104 (Spanish), 33003696 (Italian), 33003697 (Chinese)
EcoStruxure™ Control Expert, Program Languages and Structure, Reference Manual	35006144 (English), 35006145 (French), 35006146 (German), 35013361 (Italian), 35006147 (Spanish), 35013362 (Chinese)
EcoStruxure™ Control Expert, Communication, Block Library	33002527 (English), 33002528 (French), 33002529 (German), 33003682 (Italian), 33002530 (Spanish), 33003683 (Chinese)
EcoStruxure™ Control Expert, I/O Management, Block Library	33002531 (English), 33002532 (French), 33002533 (German), 33003684 (Italian), 33002534 (Spanish), 33003685 (Chinese)
EcoStruxure™ Control Expert, Concept Application Converter, User Manual	33002515 (English), 33002516 (French), 33002517 (German), 33003676 (Italian), 33002518 (Spanish), 33003677 (Chinese)

You can download these technical publications and other technical information from our website at www.schneider-electric.com/en/download.

Product Related Information

A WARNING

UNINTENDED EQUIPMENT OPERATION

The application of this product requires expertise in the design and programming of control systems. Only persons with such expertise should be allowed to program, install, alter, and apply this product.

Follow all local and national safety codes and standards.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Part I

Hardware Installation of the Discrete I/O Modules

Subject of this Part

This part presents the range of Modicon X80 discrete I/O modules.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
1	General Introduction	21
2	General Rules for Installing the Modules	39
3	Discrete Input/Output Module Diagnostic Processing	95
4	BMX DDI 1602 Input Modules	109
5	BMX DDI 1603 Input Modules	117
6	BMX DDI 1604T Input Modules	125
7	BMX DAI 1602 Input Modules	135
8	BMX DAI 1603 Input Modules	145
9	BMX DAI 1604 Input Modules	153
10	BMX DAI 1614 Input Modules	161
11	BMX DAI 1615 Input Modules	171
12	BMX DAI 0805 Input Modules	181
13	BMX DAI 0814 Input Module	189
14	BMX DDI 3202 K Input Modules	197
15	BMX DDI 6402 K Input Modules	205
16	BMX DDO 1602 Static Output Modules	213
17	BMX DDO 1612 Static Output Modules	221
18	BMX DRA 0804T Relay Output Modules	229
19	BMX DRA 0805 Relay Output Modules	237
20	BMX DRA 0815 Relay Output Modules	245
21	BMX DRA 1605 Relay Output Modules	253
22	BMX DRC 0805 Relay Output Modules	261
23	BMX DDO 3202 K Static Output Modules	269
24	BMX DDO 6402 K Static Output Modules	277
25	BMX DAO 1605 Triac Output Modules	285

Chapter	Chapter Name	Page
26	BMX DAO 1615 Isolated Triac Output Modules	293
27	BMX DDM 16022 Mixed Static Input/Output Module	303
28	BMX DDM 16025 Mixed Relay Input/Output module	313
29	BMX DDM 3202 K Mixed Static Input/Output Module	323
30	TELEFAST 2 Connection Interface Links for the Discrete I/O Modules	333

Chapter 1

General Introduction

Subject of this Section

This chapter provides a general introduction to discrete input/output modules.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
General Description of the Modules	
Physical Description of Discrete Modules with 20-pin Terminal Block Connection	23
Physical Description of Discrete Modules with 40-pin Terminal Block Connection	24
Physical Description of Discrete Modules with 40-Pin Connectors	
Discrete Input Modules Catalog	
Discrete Output Modules Catalog	30
Discrete Mixed Input/Output Modules Catalog	
Temperature Derating	
Standards and Certifications	

General Description of the Modules

At a Glance

The discrete input/output modules of the Modicon X80 range are standard format modules (occupying one single position), fitted with either:

- one 20-pin terminal block or
- one 40-pin terminal block or
- one or two 40-pin connectors

For modules fitted with 40-pin connector outputs, a series of products known as TELEFAST 2 (see page 333) is available that enables discrete input/output modules to be quickly connected to operational parts.

A wide range of discrete inputs and outputs make it possible to meet the following requirements:

- functional: direct or alternating inputs/outputs, with positive or negative logic
- modularity: 8, 16, 32, or 64 channels per module

Inputs

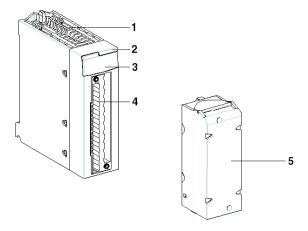
Inputs receive signals from the sensors and carry out the following functions:

- acquisition
- adaptation
- · galvanic insulation
- filtering
- protection against interference

Outputs

Outputs store the orders given by the processor, in order to control pre-actuators via decoupling and amplification circuits.

22 35012474 10/2019


Physical Description of Discrete Modules with 20-pin Terminal Block Connection

At a Glance

The I/O modules are housed in plastic cases which provide IP20 protection for all the electronic parts.

Illustration

The diagram below shows a 20-pin discrete module and a 20-pin terminal block.

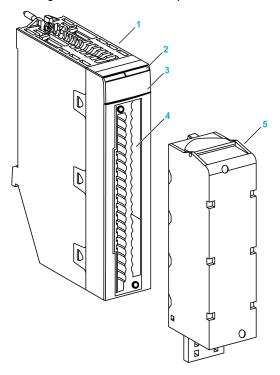
Elements

The following table describes the different elements of the discrete input/output modules with 20-pin terminal block connections.

Number	Description
1	Rigid structure which supports and protects the electronic card
2	Module reference label Note: A label is also visible on the right-hand side of the module.
3	Channel status display panel
4	Connector housing the 20-pin terminal block
5	20-pin terminal block, used to connect sensors or pre-actuators

NOTE: Terminal blocks are supplied separately.

35012474 10/2019 23


Physical Description of Discrete Modules with 40-pin Terminal Block Connection

At a Glance

The I/O modules are housed in plastic cases which provide IP20 protection for all the electronic parts.

Illustration

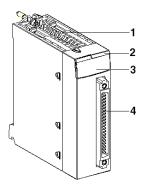
The diagram below shows a 40-pin discrete module and a 40-pin terminal block.

Elements

The following table describes the different elements of the discrete input/output modules with 40-pin terminal block connections.

Number	Description
1	Rigid structure which supports and protects the electronic card
2	Module reference label Note: A label is also visible on the right-hand side of the module.
3	Channel status display panel
4	Connector housing the 40-pin terminal block
5	40-pin terminal block, used to connect sensors or pre-actuators

NOTE: Terminal blocks are supplied separately.


Physical Description of Discrete Modules with 40-Pin Connectors

At a Glance

The input/output modules are housed in plastic cases which provide IP20 protection for all the electronic parts.

Illustration

The diagram below shows a 40-pin discrete module.

Elements

The following table describes the different elements of the discrete input/output modules by 40-pin connectors.

Number	Description
1	Rigid structure which supports and protects the electronic card
2	Module reference labels Note: A label is also visible on the right-hand side of the module.
3	Channel status display panel
4	40-pin connector, used to connect sensors or pre-actuators

26 35012474 10/2019

Discrete Input Modules Catalog

At a Glance

The tables below present the two catalogs of discrete input modules:

- with 20-pin and 40-pin terminal blocks
- with 40-pin connectors

Catalog of Terminal Block Input Modules

Catalog of discrete input modules with 20-pin terminal block connection.

Type of module	Inputs with 20-pin terminal block connection								
Illustra- tion	Discrete input module								
Num- ber of chan- nels	16 inputs	16 inputs	16 inputs	16 inputs		16 inputs	16 inputs	8 inputs	8 inputs
Range	24 VDC	48 VDC	125 VDC	24 VAC	24 VDC	48 VAC	100120 VAC	100120 VAC	200 240 VAC
Insula- tion	Insulat- ed inputs	Insulat- ed inputs	Insulated inputs	Insulated	inputs	Insulated inputs	Insulated inputs	channel to channel isolated inputs	Insulated inputs
IEC 61131-2 compli- ance	Type 3	Type 1	N/A	Type 1	N/A	Type 3	Type 3	Type 3	Type 2
Logic	Positive	Positive	Positive	N/A	Posi- tive or Nega- tive	N/A	N/A	N/A	N/A
Proximi- ty sen- sor compat- ibility	2-wire DC and 3-wire PNP proximity sensor (IEC 60947-5-2 standard compliant)			N/A		and 3-wire PNP 7-5-2 standard c		r	

35012474 10/2019 27

Re- sponse time	4 ms	4 ms	5 ms	15 ms	10 ms	10 ms	10 ms	10 ms
Type of Inter-face	20-pin terminal block	20-pin terminal block	20-pin terminal block	20-pin terminal block	20-pin terminal block	20-pin terminal block	20-pinterminal block	20-pin terminal block
Refer- ence	BMX DDI 1602	BMX DDI 1603	BMX DDI 1604T	BMX DAI 1602	BMX DAI 1603	BMX DAI 1604	BMX DAI 0814	BMX DAI 0805

Catalog of discrete input modules with 40-pin terminal block connection.

Type of module	Inputs with 40-pin terminal block connection					
Illustration	Discrete input module					
Number of channels	16 inputs	16 inputs				
Range	100120 VAC	200240 VAC				
Insulation	channel to channel isolated inputs	channel to channel isolated inputs				
IEC 61131-2 compliance	Type 1	Type 1				
Logic	N/A	N/A				
Proximity sensor compatibility	2-wire and 3-wire proximity sensor (IEC 60947-5-2 standard compliant)					
Response time	10 ms 10 ms					
Type of Interface	40-pin terminal block	40-pin terminal block				
Reference	BMX DAI 1614	BMX DAI 1615				

28 35012474 10/2019

Catalog of 40-pin Connector Input Modules

Catalog of discrete input modules with 40-pin connectors.

Type of module	Inputs with connection via 40-pin connectors	s	
Illustration	Discrete input module	Discrete input module	
Number of channels	32 inputs	64 inputs	
Range	24 VDC	24 VDC	
Insulation	Inputs insulated per group of 16 channels	Inputs insulated per group of 16 channels	
IEC 61131-2 compliance	Type 3	No type	
Logic	Positive	Positive	
Proximity sensor compatibility	2-wire proximity sensor 3-wire PNP proximity sensor	3-wire PNP proximity sensor	
Response time	4 ms	4 ms	
Type of Interface	1 x 40-pin connector	2 x 40-pin connectors	
Reference	BMX DDI 3202 K	BMX DDI 6402 K	

Discrete Output Modules Catalog

At a Glance

The tables below show the catalogs of static and relay output modules.

Catalog of Output Modules

Catalog of discrete static output modules with connection via 20-pin terminal blocks and 40-pin connectors.

Type of module	Static outputs with 20-p	oin terminal block	Static outputs with 40-p	oin connectors	
Illustration	Discrete output module		Discrete output module	Discrete output module	
Number of channels	16 outputs	16 outputs	32 outputs	64 outputs	
Range	24 VDC	24 VDC	24 VDC	24 VDC	
Insulation	Insulated outputs	Insulated outputs	Outputs insulated per group of 16 channels		
Current	0.5 A	0.5 A	0.1 A	0.1 A	
Overload protection		nst short-circuits and ove demagnetization circuit	erloads with automatic o	r controlled reactivation	
Logic	Positive Negative		Positive	Positive	
Response time	1.2 ms	1.2 ms	1.2 ms	1.2 ms	
Type of Interface	20-pin terminal block	20-pin terminal block	1 x 40-pin connector	2 x 40-pin connectors	
Reference	BMX DDO 1602	BMX DDO 1612	BMX DDO 3202 K	BMX DDO 6402 K	

Catalog of Relay Output Modules

Catalog of discrete relay output modules with 20-pin and 40-pin terminal block connection.

Type of module	Relay outputs with		Relay outputs with 40-pin terminal block connections		
Illustration	Discrete output mo	Discrete output module			
Number of channels	8 outputs	8 outputs	8 outputs	16 outputs	8 NO/NC outputs
Range	125 VDC	24 VDC or 24240 VAC	5125 VDC or 24240 VAC	2448 VDC or 24240 VAC	5125 VDC or 24240 VAC
Insulation	Outputs insulated from ground	Outputs insulated from ground	Outputs insulated from ground	Outputs insulated from ground	Outputs insulated from ground
Type of contact	8 insulated channels	8 insulated channels	8 insulated channels	1 common per group of 8 channels	8 insulated channels
Thermal current per channel	3 A	3 A	2 A	2 A	4 A
Overload protection	No protection	No protection	No protection	No protection	No protection
Logic	Positive/negative	Positive/nega- tive	Positive/nega- tive	Positive/nega- tive	Positive/negative
Response time	10 ms max	10 ms max	13 ms max	10 ms max	13 ms max
Type of Interface	20-pin terminal block	20-pin terminal block	20-pin terminal block	20-pin terminal block	40-pin terminal block
Reference	BMX DRA 0804T	BMX DRA 0805	BMX DRA 0815	BMX DRA 1605	BMX DRC 0805

Catalog of Triac Output Module

Catalog of discrete triac output module with connection via 20-pin and 40-pin terminal blocks.

Type of module	Triac outputs with 20-pin terminal block connections	Triac outputs with 40-pin terminal block connections		
Illustration	Discrete output module	Discrete output module		
Number of channels	16 outputs	16 outputs		
Range	100240 VAC	24240 VAC		
Insulation	Outputs insulated by group of 4 channels	Outputs individually insulated		
Current	max: 0.6 A / points (with derating (see page 35))	max: 3 A per channel (with derating (see page 295))		
Overload protection	Snubber circuit and varistor	Snubber circuit and varistor		
Logic	-	-		
Response time	1 ms + 0.5 x (1/F) (where F = frequency in Hz)	max: 0.5 x (1/F) (where F = frequency in Hz)		
Type of Interface 20-pin terminal block		40-pin terminal block		
Reference	BMX DAO 1605	BMX DAO 1615		

Discrete Mixed Input/Output Modules Catalog

At a Glance

The table below presents the catalog of discrete mixed input/output modules with connections by 20-pin terminal block and by 40-pin connectors.

Catalog

Catalog of discrete mixed input/output modules with connection via 20-pin terminal blocks and 40-pin connectors.

	Type of module	Mixed inputs/outputs connections	Mixed inputs/outputs with 40-pin terminal block connections		
	Illustration	Illustration Discrete mixed input/output modules i			
		The state of the s		S (Summerced) E	
	Number of channels	8 inputs 8 outputs	8 inputs 8 outputs	16 inputs 16 outputs	
Inputs	Range	24 VDC	24 VDC	24 VDC	
	Insulation	Insulated inputs	Insulated inputs	Insulated inputs	
	IEC 61131-2 compliant	Type 3	Type 3	Type 3	
	Logic Positive Positive			Positive	
	Response time	4 ms	4 ms	4 ms	

Outputs	Range	Static outputs 24 VDC	Relay outputs 24 VDC or 24240 VAC	Static outputs 24 VDC
	Insulation	Outputs insulated from ground	Outputs insulated from ground 1 common per group of 8 channels	Outputs insulated from ground
	Current	0.5 A	2 A	0.1 A
	IEC 61131-2 compliant	Yes	Yes	Yes
	Overload protection	Outputs are protected against overloads and short-circuits.	N/A	Outputs are protected against overloads and short-circuits.
	Logic	Positive	N/A	Positive
	Response time	1.2 ms	10 ms max	1.2 ms
	Connections	20-pin terminal block	20-pin terminal block	1 x 40-pin connector
	Reference	BMX DDM 16022	BMX DDM 16025	BMX DDM 3202 K

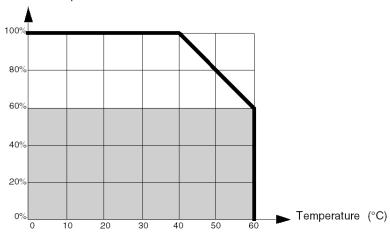
34 35012474 10/2019

Temperature Derating

At a Glance

The characteristics are specified for a load rate of 60% of the channels.

A CAUTION


OVERHEATING HAZARD

Take into account the temperature derating of the discrete I/O modules at the installation to prevent the device from overheating and/or deteriorating.

Failure to follow these instructions can result in injury or equipment damage.

If the rate is greater than 60%, the following downgrade curve must be taken into consideration.

NOTE: There is no temperature derating for relay modules. Users must therefore check that the overall consumption of the 24 VDC power supply is sufficient.

NOTE: For static outputs, temperature derating is carried out on the basis of the maximum current produced by the active outputs.

Altitude Operating Conditions

The temperature derating applies to the modules for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating. For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

35012474 10/2019 35

Examples

BMX DDO 1602

Suppose the BMX DDO 1602 module with sixteen 24 VDC/0.5 A outputs produces 0.5 A per channel. For an ambient temperature reading of between 0° C and 40° C, the maximum admissible current in the module is equal to $16 \times 0.5 = 8$ A. Above 40° C, the downgrading curve must be applied. At 60° C, the maximum current in 24 VDC must not exceed $8 \times 60^{\circ} = 4.8$ A. This value corresponds to 10 outputs at 0.5 A or 16 outputs at 0.3 A or other combinations.

BMX DDO 6402

Suppose the BMX DDO 6402 K module with sixty-four 24 VDC/0.1 A outputs produces 0.1 A per channel. For an ambient temperature reading of between 0°C and 40°C, the maximum admissible current in the module is equal to 64 x 0.1 = 6.4 A. Above 40°C, the downgrading curve must be applied. At 60°C, the maximum current in 24 VDC must not exceed $6.4 \times 60\% = 3.8 \text{ A}$. This value corresponds to 38 outputs at 0.1 A or 64 outputs at 0.05 A or other combinations.

BMX DAO 1605

Suppose the BMX DAO 1605 module with sixteen 220 VAC outputs producing 0.3 A per channel. For an ambient temperature reading of between 0°C and 40°C, the maximum admissible current in the module is equal to 16 x 0.3 A = 4.8 A (2,4 A per 8-channel group maximum). Above 40°C, the downgrading curve must be applied. At 60°C, the maximum current in 220 Vac must not exceed 4.8 A x 0.6 = 2.9 A (1.5 A per 8-channel group maximum). This value corresponds to 10 outputs at 0.3 A or to 16 outputs at 0.18 A.

36 35012474 10/2019

Standards and Certifications

Download

Click the link that corresponds to your preferred language to download standards and certifications (PDF format) that apply to the modules in this product line:

Title	Languages
Modicon M580, M340, and X80 I/O Platforms,	● English: <i>EIO0000002726</i>
Standards and Certifications	• French: <i>EIO0000002727</i>
	• German: <i>EIO0000002728</i>
	• Italian: <u>E/O000002730</u>
	• Spanish: <i>EIO0000002729</i>
	• Chinese: <u>EIO0000002731</u>

35012474 10/2019

Chapter 2

General Rules for Installing the Modules

Subject of this Section

This chapter presents the general rules for installing discrete input/output modules.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Fitting of the Modules	
20-pin Terminal Blocks: BMX FTB 20•0	43
40-pin Terminal Blocks: BMX FTB 40•0	46
BMX FTW ••1 Cable	52
BMX FTW ••5 Cable	55
Fitting a 20-pin Terminal Block to a Module	
Fitting a 40-Pin Terminal Block to a Module	
Fitting a 40-pin FCN Type Connector to a Module	
Presentation for Choosing Power Supplies for Sensors and Pre-Actuators	71
Wiring Precautions	75
How to Connect Discrete Input/Output Modules: Connecting 40-Pin Connector Modules	
How to Connect Discrete Input/Output Modules: Connecting 40-Pin Connector Modules to TELEFAST Interfaces	85
Sensor/Input Compatibility and Pre-actuator/Output Compatibility	90

35012474 10/2019

Fitting of the Modules

At a Glance

The discrete input/output modules are powered by the bus of the rack. The modules may be handled without turning off power supply to the rack, without damage or disturbance to the PLC.

Fitting operations (installation, assembly and disassembly) are described below.

Installation Precautions

The Modicon X80 discrete modules may be installed in any of the positions in the rack except:

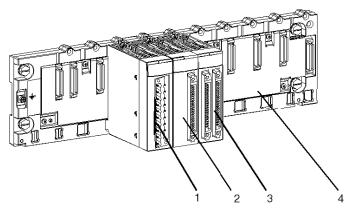
- the positions reserved for the rack power supply modules (marked PS, PS1, and PS2),
- the positions reserved for extended modules (marked XBE),
- the positions reserved for the CPU in the main local rack (marked 00 or marked 00 and 01 depending on the CPU),
- the positions reserved for the (e)X80 adapter module in the main remote drop (marked 00).

Power is supplied by the bus at the bottom of the rack (3.3 V and 24 V).

Before installing a module, you must take off the protective cap from the module connector located on the rack.

A A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH


Disconnect the power to the sensors and pre-actuators and disconnect the terminal block to carry out assembly and disassembly of the modules.

Failure to follow these instructions will result in death or serious injury.

35012474 10/2019

Installation

The following table describes the different elements which make up the assembly below.

Number	Description
1	20-pin terminal block module
2	40-pin connector module
3	2 x 40-pin connector module
4	Standard rack

Installing the Module on the Rack

The table below presents the procedure for mounting the discrete input/output modules on the rack:

Step	Action	
1	Remove the protective cover from the connector of the mod	ule slot on the Modicon X80 rack.
2	Position the locating pins situated at the rear of the module (on the bottom part) in the corresponding slot in the rack.	
3	Swivel the module towards the top of the rack so that the module sits flush with the back of the rack.	
4	Tighten the mounting screw on top of the module to hold in place on the rack. Tightening torque: 0.41.5 N•m (0.301.10 lbf-ft).	

A WARNING

UNINTENDED EQUIPMENT OPERATION

Check that the mounting screw is securely tightened to ensure the module is firmly attached to the rack.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

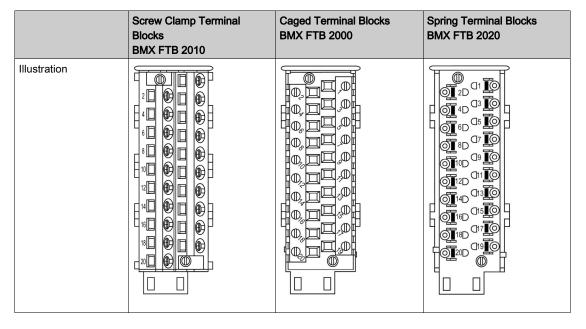
20-pin Terminal Blocks: BMX FTB 20•0

At a Glance

There are three types of 20-pin terminal blocks:

- BMX FTB 2010 screw clamp terminal blocks
- BMX FTB 2000 caged terminal blocks
- BMX FTB 2020 spring terminal blocks

Cable Ends and Contacts


Each terminal block can accommodate:

- Bare wires
- Wires with:
 - O DZ5-CE (ferrule) type cable ends:
 - AZ5-DE (twin ferrule) type cable ends:

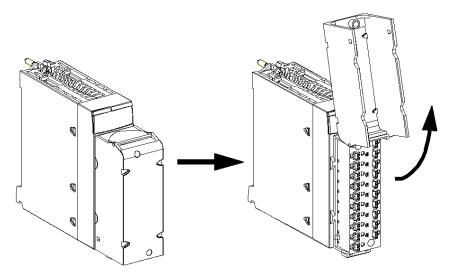
NOTE: When using stranded cable, Schneider Electric strongly recommends the use of wire ferrules which are fitted with an appropriate crimping tool.

Description of the 20-pin Terminal Blocks

The following table describes the type of wires that fit each terminal block and the associated gauge range, wiring constraints, and tightening torque:

	Screw Clamp Terminal Blocks BMX FTB 2010	Caged Terminal Blocks BMX FTB 2000	Spring Terminal Blocks BMX FTB 2020
1 solid conductor	• AWG: 2216	• AWG: 2218	• AWG: 2218
	• mm ² : 0.341.5	• mm ² : 0.341	• mm ² : 0.341
2 solid conductors	2 conductors of the same size: • AWG: 2 x 2216 • mm ² : 2 x 0.341.5	Only possible with twin ferrule: • AWG: 2 x 2420 • mm ² : 2 x 0.240.75	Only possible with twin ferrule: • AWG: 2 x 2420 • mm ² : 2 x 0.240.75
1 stranded cable	• AWG: 2216 • mm ² : 0.341.5	• AWG: 2218 • mm ² : 0.341	• AWG: 2218 • mm ² : 0.341
2 stranded cables	2 conductors of the same size: • AWG: 2 x 2216 • mm ² : 2 x 0.341.5	Only possible with twin ferrule: • AWG: 2 x 2420 • mm ² : 2 x 0.240.75	Only possible with twin ferrule: • AWG: 2 x 2420 • mm ² : 2 x 0.240.75
1 stranded cable with ferrule	• AWG: 2216 • mm ² : 0.341.5	• AWG: 2218 • mm ² : 0.341	• AWG: 2218 • mm ² : 0.341
2 stranded cables with twin ferrule	 AWG: 2 x 2418 mm²: 2 x 0.241 	 AWG: 2 x 2420 mm²: 2 x 0.240.75 	 AWG: 2 x 2420 mm²: 2 x 0.240.75
Minimum individual wire size in stranded cables when a ferrule is not used	• AWG: 30 • mm ² : 0.0507	• AWG: 30 • mm ² : 0.0507	• AWG: 30 • mm ² : 0.0507
Wiring constraints	Screw clamps have slots that accept: • Flat-tipped screwdrivers with a diameter of 5 mm. • Pozidriv PZ1 or Philips PH1 cross-tipped screwdrivers. Screw clamp terminal blocks have captive screws. On the supplied blocks, these screws are not tightened.	Caged terminal blocks have slots that accept: • Flat-tipped screwdrivers with a diameter of 3 mm. Caged terminal blocks have captive screws. On the supplied blocks, these screws are not tightened.	The wires are connected by pressing the button located next to each pin. To press the button, use a flat-tipped screwdriver with a maximum diameter of 3 mm.
Screw tightening torque	0.5 N•m (0.37 lbf-ft)	0.4 N•m (0.30 lbf-ft)	Not applicable

Connection of 20-pin Terminal Blocks


A A DANGER

HAZARD OF ELECTRIC SHOCK

Turn off all power to sensor and pre-actuator devices before connection or disconnection of the terminal block.

Failure to follow these instructions will result in death or serious injury.

The following diagram shows the method for opening the 20-pin terminal block door so that it can be wired:

NOTE: The connection cable is installed and held in place by a cable clamp positioned below the 20-pin terminal block.

Labeling of 20-pin Terminal Blocks

Labels for the 20-pin terminal blocks are supplied with the module. They are to be inserted in the terminal block cover by the customer.

Each label has two sides:

- One side that is visible from the outside when the cover is closed. This side features the commercial product references, an abbreviated description of the module, as well as a blank section for customer labeling.
- One side that is visible from the inside when the cover is open. This side shows the terminal block connection diagram.

40-pin Terminal Blocks: BMX FTB 40•0

At a Glance

There are two versions, available in two types of 40-pin terminal blocks:

Standard version

- O BMX FTB 4000 caged terminal block
- O BMX FTB 4020 spring terminal block

Hardened version

- O BMX FTB 4000H caged terminal block with gold plating
- BMX FTB 4020H spring terminal block with gold plating

The hardened version of the terminal blocks are only dedicated to the hardened version of the modules.

NOTE: If you mix hardened and standard versions when fitting the terminal block to the module, there is a risk of terminal pin corrosion and a signal deviation.

▲ WARNING

UNINTENDED EQUIPMENT OPERATION

- Do not use the hardened version of the terminal block with a standard module.
- Do not use the standard version of the terminal block with a hardened module.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

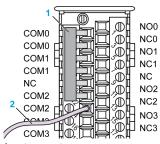
There are also preassembled cordsets with a BMX FTB 4020 terminal block at one end and flying leads at the other. The cordsets are available under reference BMX FTW ••5 (see page 57).

Cable Ends and Contacts

The 40-pin terminal blocks are designed for only one wire or one cable end.

Each terminal block can accommodate:

- Bare wires:
 - Solid conductor
 - Stranded cable
- Wires with ferrule (DZ5CE••••/DZ5CA•••• single type cable ends):


NOTE: When using stranded cable, Schneider Electric strongly recommends the use of wire ferrules which are fitted with an appropriate crimping tool.

Jumper bar

To facilitate the wiring, a 20-pin jumper bar with plastic handle is provided with 40-pin caged screw terminal block BMX FTB 4000:

The following graphic shows an example of using the jumper bar for non-isolated wiring channel 0-2 with on a BMX DRC 0805 module:

- 1 Jumper bar
- 2 to common

A CAUTION

UNINTENDED EQUIPMENT OPERATION

Do not exceed the maximum capability of a single point of the terminal block when using it to carry the whole common current:

- 10 A maximum for a single point of the BMXFTB4000 terminal block
- 8 A maximum for a single point of the BMXFTB4020 terminal block

Failure to follow these instructions can result in injury or equipment damage.

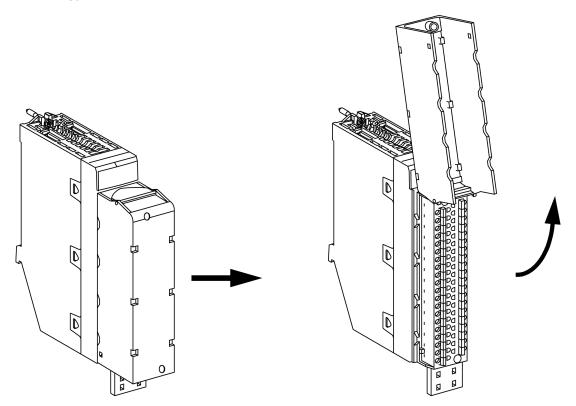
Description of the 40-pin Terminal Blocks

The following table describes the type of wires that fit each terminal block and the associated gauge range, wiring constraints, and tightening torque:

	Caged Terminal Blocks BMX FTB 4000	Spring Terminal Blocks BMX FTB 4020
Illustration		
1 solid conductor	 AWG: 2618 mm²: 0.131 	 AWG: 2618 mm²: 0.131
1 stranded cable	• AWG: 2218 • mm ² : 0.341	• AWG: 2218 • mm ² : 0.341
1 stranded cable with ferrule	 AWG: 2218 mm²: 0.341 	 AWG: 2218 mm²: 0.341
Minimum individual wire size in stranded cables when a ferrule is not used	• AWG: 30 • mm ² : 0.0507	• AWG: 30 • mm ² : 0.0507

	Caged Terminal Blocks BMX FTB 4000	Spring Terminal Blocks BMX FTB 4020
Wiring constraints	Caged terminal blocks have slots that accept: • Flat-tipped screwdrivers with a diameter of 3 mm. Caged terminal blocks have captive screws. On the supplied blocks, these screws are not tightened.	The wires are connected by pressing the button located next to each pin. To press the button, use a flat-tipped screwdriver with a maximum diameter of 3 mm.
Screw tightening torque	0.4 N•m (0.30 lbf-ft)	Not applicable

Connection of 40-pin Terminal Blocks


A A DANGER

HAZARD OF ELECTRIC SHOCK

Turn off all power to sensor and pre-actuator devices before connection or disconnection of the terminal block.

Failure to follow these instructions will result in death or serious injury.

The following diagram shows the method for opening the terminal block cover so that it can be wired.

The connection cable is installed and held in place by cable clamps positioned below the terminal block.

NOTE: For installation where vibration can occur, do not let the cable loose from movement. Tighten cable to the bar of the shielding connection kit BMXXSP••00 or to rear mounting plate using cable clamp.

Labeling the Terminal Blocks

The labels for the terminal blocks are supplied with the module. They are to be inserted in the terminal block cover by the customer.

Each label has two sides:

- One side that is visible from the outside when the cover is closed. This side features the
 commercial product references, an abbreviated description of the module, as well as a blank
 section for customer labeling.
- One side that is visible from the inside when the cover is open. This side shows the terminal block connection diagram.

BMX FTW ••1 Cable

Introduction

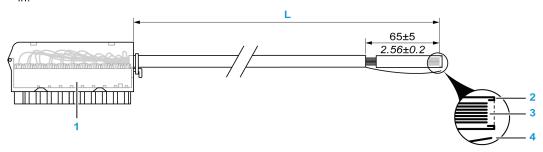
20-pin connector modules are connected to sensors, pre-actuators or terminals using a cable designed to enable direct wire to wire transition of the module's inputs/outputs.

A WARNING

UNEXPECTED EQUIPMENT OPERATION

Use only a connector that is designed for a specific module. Plugging the wrong connector can cause an unexpected behavior of the application.

Failure to follow these instructions can result in death, serious injury, or equipment damage.


BMX FTW ••1 Cable Description

The BMX FTW •01 cables are pre-assembled cord set, made up of:

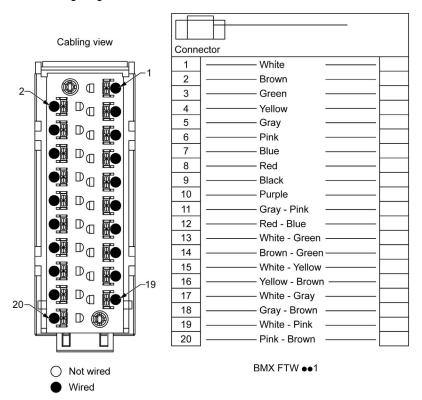
- At one end, a compound-filled 20-pin BMX FTB 2020 terminal block from which extend 1 cable sheath containing 20 wires,
- At the other end, free wire ends differentiated by color code.

The figure below shows the BMX FTW •01 cables:

 $\frac{mm}{in}$

- 1 BMX FTB 2020 Terminal block
- 2 First of external sheath
- 3 Wires not stripped
- 4 Strand of nylon allowing the cable sheath to be stripped easily.
- L Length according to the part number.

The connection cables come in three different lengths:


• 3 m (9.84 ft): BMX FTW 301

• 5 m (16.40 ft): BMX FTW 501

• 10 m (32.80 ft): BMX FTW 1001

Connection of BMX FTW ••1 Cables

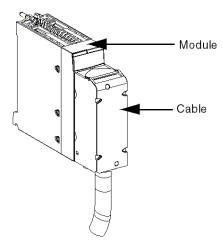
The following diagram shows the connection of the BMX FTW ••1 cable:

BMX FTW ••1 Cables Characteristics

This table presents the general characteristics:

Characteristics		Values
Cable	Sheath material	PVC
	LSZH status	No
Conductor description	Number of conductors	20
	Gauge	0.34 mm ² (22 AWG)
	Material	Tinned copper
Environmental	Operating temperature	-2570 °C (-13158 °F)
Applicable standards		DIN47100

Cable Installation


A A DANGER

HAZARD OF ELECTRIC SHOCK

Turn off all power to sensor and pre-actuator devices before connection or disconnection of the terminal block.

Failure to follow these instructions will result in death or serious injury.

The following diagram shows the pre-assembled cable connected to the module:

For more detailed information, refer to the topic *Fitting a 20-pin Terminal Block to a Module (see page 60)*.

BMX FTW ••5 Cable

Introduction

40-pin connector modules are connected to sensors, pre-actuators or terminals using a cable designed to enable direct wire to wire transition of the module's inputs/outputs.

A WARNING

UNEXPECTED EQUIPMENT OPERATION

Use only a connector that is designed for a specific module. Plugging the wrong connector can cause an unexpected behavior of the application.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

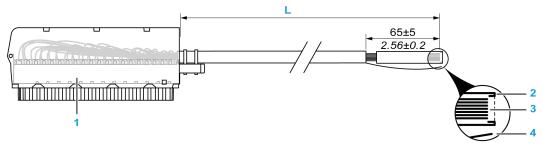
BMX FTW ••5 Cable Description

The BMX FTW ••5 cables are pre-assembled cord set, made up of:

- At one end, a compound-filled 40-pin BMX FTB 4020 terminal block (non-gold plated spring terminal block) from which extend 1 cable sheath containing 40 wires.
- At the other end, free wire ends differentiated by color code.

NOTE: This preassembled cordset is only dedicated to standard module version.

A WARNING

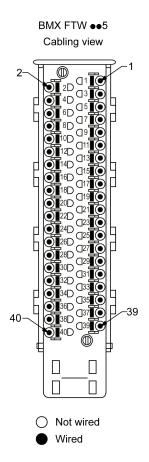

UNINTENDED EQUIPMENT OPERATION

Do not use BMX FTW ••5 cable with hardened module.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The figure below shows the BMX FTW •05 cables:

 $\frac{mm}{in}$


- 1 BMX FTB 4020 Terminal block
- 2 First of external sheath
- 3 Wires not stripped
- 4 Strand of nylon allowing the cable sheath to be stripped easily.
- L Length according to the part number.

The connection cables come in three different lengths:

- 3 m (9.84 ft): BMX FTW 305
- 5 m (16.40 ft) : BMX FTW 501

Connection of BMX FTW ••5 Cables

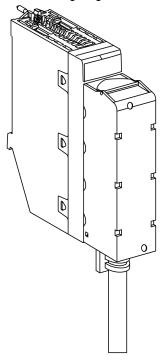
The following diagram shows the connections and the color-coded according to DIN47100:

BMX FTW ••5 Cables Characteristics

This table presents the general characteristics:

Characteristics		Values
Cable	Sheath material	PVC
	LSZH status	No
Application type	Maximum voltage	300 Vrms
Conductor description	Number of conductors	40
	Gauge	0.34 mm ² (22 AWG)
	Material	Tinned copper
	Maximum current	2 A below 30 °C (86 °F) 0.8 A below 70 °C (158 °F)
Electrical	Dielectric withstand	2500 V for 1 min.
Environmental	Operating temperature	-2570 °C (-13158 °F)
Applicable standards		DIN47100

BMX FTW •• 5 Cables Installation


⚠ ⚠ DANGER

HAZARD OF ELECTRIC SHOCK

Turn off all power to sensor and pre-actuator devices before connection or disconnection of the terminal block.

Failure to follow these instructions will result in death or serious injury.

The following diagram shows the pre-assembled cable connected to the module:

For more detailed information, refer to the topic Fitting a 40-pin Terminal Block to a Module (see page 64).

NOTE: For installation where vibration can occur, do not let the BMX FTW ••5 cable loose from movement. Tighten cable to the bar of the shielding connection kit BMXXSP••00 or to rear mounting plate using cable clamp.

Fitting a 20-pin Terminal Block to a Module

At a Glance

The modules with 20-pin terminal block connections require the terminal block to be connected to the module. These fitting operations (assembly and disassembly) are described below.

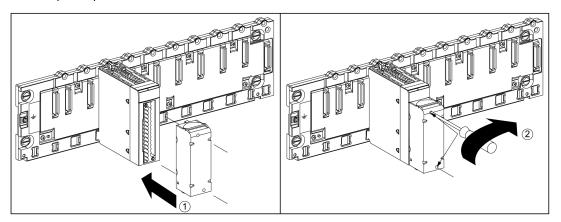
A A DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Terminal block must be connected or disconnected with sensor and pre-actuator voltage switched off.

Failure to follow these instructions will result in death or serious injury.

A CAUTION


EQUIPMENT DAMAGE

Do not plug an AC terminal block into a DC module. This will cause damage to the module.

Failure to follow these instructions can result in injury or equipment damage.

Installing the Terminal Block

The following table shows the procedure for assembling the 20-pin terminal block onto a discrete input/output module.

35012474 10/2019

Assembly Procedure

Step	Action
1	Once the module is in place on the rack, install the terminal block by inserting the terminal block encoder (the rear lower part of the terminal) into the module's encoder (the front lower part of the module), as shown above.
	NOTE: The module connector have indicators which show the proper direction to use for terminal block installation.
2	Fix the terminal block to the module by tightening the 2 mounting screws located on the lower and upper parts of the terminal block. Tightening torque: 0.4 N•m (0.30 lbf-ft).

NOTE: If the screws are not tightened, there is a risk that the terminal block will not be properly fixed to the module.

Coding the 20-Pin Terminal Block

A WARNING

UNEXPECTED BEHAVIOUR OF APPLICATION

Code the terminal block as described below to prevent the terminal block from being mounted on another module.

Plugging the wrong connector could cause unexpected behaviour of the application.

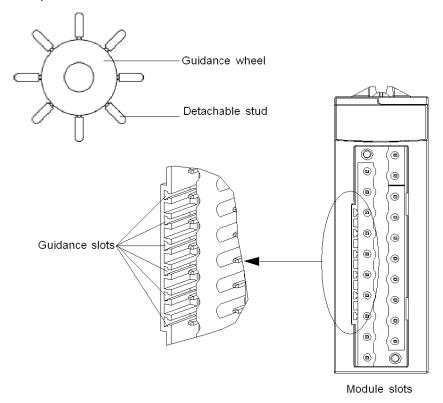
Failure to follow these instructions can result in death, serious injury, or equipment damage.

A CAUTION

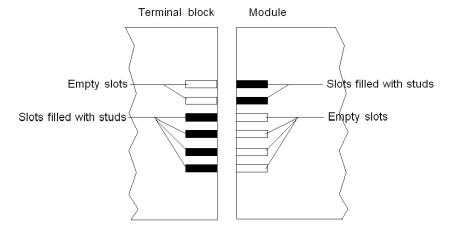
DESTRUCTION OF THE MODULE

Code the terminal block as described below to prevent the terminal block from being mounted on another module.

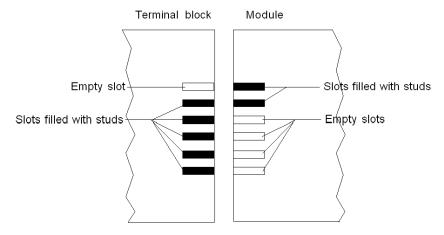
Plugging the wrong connector could cause the module to be destroyed.


Failure to follow these instructions can result in injury or equipment damage.

When a 20-pin terminal block is installed on a module dedicated to this type of terminal block, you can code the terminal block and the module using studs. The purpose of the studs is to prevent the terminal block from being mounted on another module. Incorrect insertion can then be avoided when replacing a module.


Coding is done by the user with the STB XMP 7800 guidance wheel's studs. You can only fill the 6 slots in the middle of the left side (as seen from the wiring side) of the terminal block, and can fill the module's 6 guidance slots on the left side.

To fit the terminal block to the module, a module slot with a stud must correspond to an empty slot in the terminal block, or a terminal block with a stud must correspond to an empty slot in the module. You can fill up to and including either of the 6 available slots as desired.


The diagram below shows a guidance wheel as well as the slots on the module used for coding the 20-pin terminal blocks.

The diagram below shows an example of a coding configuration that makes it possible to fit the terminal block to the module.

The diagram below shows an example of coding configuration with which it is not possible to fit the terminal block to the module.

Fitting a 40-Pin Terminal Block to a Module

At a Glance

The modules with 40-pin terminal block connections require the terminal block to be connected to the module. These fitting operations (assembly and disassembly) are described below.

A A DANGER

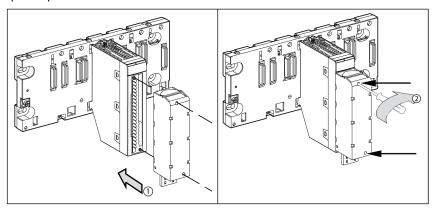
HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Terminal blocks must be connected or disconnected with sensor and pre-actuator voltage switched off.

Failure to follow these instructions will result in death or serious injury.

A CAUTION

EQUIPMENT DAMAGE


Do not plug an AC terminal block into a DC module. This will cause damage to the module.

Failure to follow these instructions can result in injury or equipment damage.

35012474 10/2019

Installing the 40-Pin Terminal Block

The following table shows the procedure for assembling the 40-pin terminal block onto a discrete input/output module.

Assembly Procedure

Step	Action
1	Once the module is in place on the rack, install the terminal block by inserting the terminal block encoder (the rear lower part of the terminal) into the module's encoder (the front lower part of the module), as shown above.
	NOTE: The module connector have indicators which show the proper direction to use for terminal block installation.
2	Fix the terminal block to the module by tightening the 2 mounting screws located on the lower and upper parts of the terminal block. Tightening torque: 0.4 N•m (0.30 lbf-ft).

NOTE: If the screws are not tightened, there is a risk that the terminal block will not be properly fixed to the module.

Coding the 40-Pin Terminal Block

A WARNING

UNEXPECTED BEHAVIOUR OF APPLICATION

Code the terminal block as described below to prevent the terminal block from being mounted on another module.

Plugging the wrong connector could cause unexpected behaviour of the application.

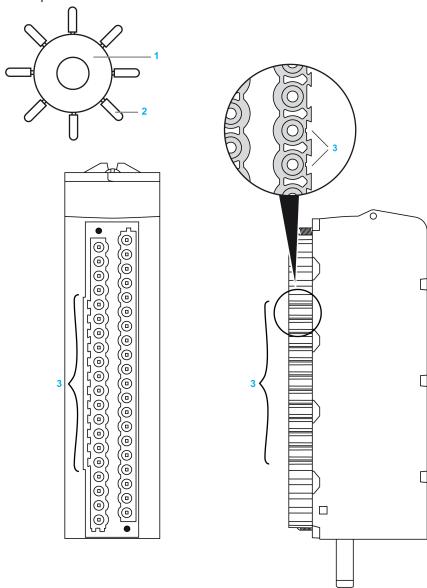
Failure to follow these instructions can result in death, serious injury, or equipment damage.

A CAUTION

DESTRUCTION OF THE MODULE

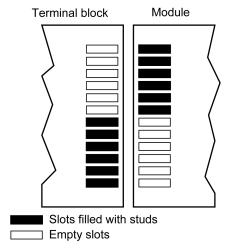
Code the terminal block as described below to prevent the terminal block from being mounted on another module.

Plugging the wrong connector could cause the module to be destroyed.

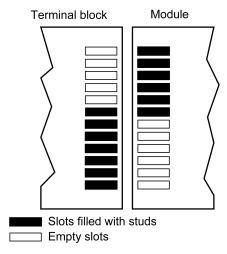

Failure to follow these instructions can result in injury or equipment damage.

When a 40-pin terminal block is installed on a module dedicated to this type of terminal block, you can code the terminal block and the module using studs. The purpose of the studs is to prevent the terminal block from being mounted on another module. Incorrect insertion can then be avoided when replacing a module.

Coding is done by the user with the STB XMP 7800 guidance wheel's studs. You can only fill the 12 slots in the middle of the left side (as seen from the wiring side) of the terminal block, and can fill the module's 12 guidance slots on the left side.


To fit the terminal block to the module, a module slot with a stud must correspond to an empty slot in the terminal block, or a terminal block with a stud must correspond to an empty slot in the module. You can fill up to and including either of the 12 available slots as desired.

The diagram below shows a guidance wheel as well as the slots on the module used for coding the 40-pin terminal blocks.



- 1 Guidance wheel
- 2 Detachable stud
- **3** Guidance slots

The diagram below shows an example of a coding configuration that makes it possible to fit the terminal block to the module.

The diagram below shows an example of coding configuration with which it is not possible to fit the terminal block to the module.

35012474 10/2019

Fitting a 40-pin FCN Type Connector to a Module

At a Glance

The modules with 40-pin FCN type connections require the latter to be connected to the module. These fitting operations (assembly and disassembly) are described below.

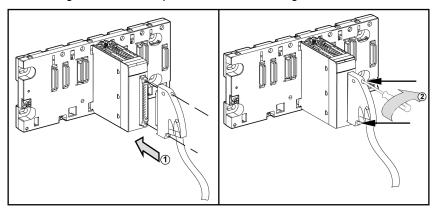
A A DANGER

ELECTRICAL SHOCK

FCN type connector must be connected or disconnected with sensor and pre-actuator voltage switched off.

Failure to follow these instructions will result in death or serious injury.

A CAUTION


EQUIPMENT DAMAGE

Do not plug an AC connector on a DC module. This would cause equipment damage.

Failure to follow these instructions can result in injury or equipment damage.

Installing the Connector

The following table shows the procedure for assembling the connector onto modules:

Assembly procedure:

Step	Action
1	Once the module is in place on the rack, insert the FCN connector of the cable into the module's connector, as shown above.
2	Fix the connector to the module by tightening the 2 mounting screws located on the lower and upper parts of the terminal block. Tightening torque: 0.4 N•m (0.30 lbf-ft).

NOTE: If the screws are not tightened, there is a risk that the terminal block will not be properly fixed to the module.

Presentation for Choosing Power Supplies for Sensors and Pre-Actuators

At a Glance

The different choices of power supply for sensors and pre-actuators linked to discrete input/output modules require certain usage precautions to be observed.

External Direct Current Power Supplies

UNEXPECTED EQUIPMENT OPERATION

When using an external 24 VDC direct current power supply, use either:

- · regulated power supplies or
- non-regulated power supplies with:
 - \circ filtering of 1000 μ F/A with full-wave single phase rectification and 500 μ F/A with tri-phase rectification
 - o a 5% maximum peak to peak ripple rate
 - o a maximum voltage variation of: -20% to +25% of the nominal voltage (including ripple)

Rectified power supplies with no filtering are prohibited.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

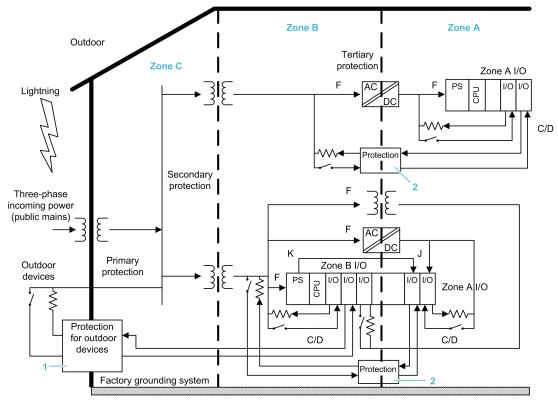
Ni-Cad Battery Power Supplies

Ni-Cad battery power supplies can be used to power sensors and pre-actuators and all associated inputs/outputs that have a normal operating voltage of 30 VDC maximum.

While being charged, this type of battery can reach, for a duration of one hour, a voltage of 34 VDC. For this reason, all input/output modules with an operating voltage of 24 VDC can withstand this voltage (34 VDC) for up to one hour every 24 hours. This type of operation entails the following restrictions:

- at 34 VDC, the maximum current withstood by the outputs must under no circumstances exceed the maximum current defined for a voltage of 30 VDC
- temperature downgrading imposes the following restrictions:
 - 80% of inputs/outputs at 1 up to 30°C
 - o 50% of inputs/outputs at 1 up to 60°C

OVERHEATING HAZARD

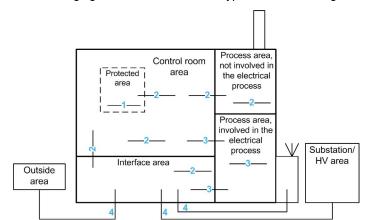

Take into account the temperature derating of the discrete I/O modules at the installation to prevent the device from overheating and/or deteriorating.

Failure to follow these instructions can result in injury or equipment damage.

External AC Current Power Supplies

All BMXDAI••••, BMXDAO••••, BMXDRA••••, and BMXDRC•••• modules are designed for a use in zone A and B defined in the PLC standard IEC 61131-2 and the generic EMC standard IEC 61000-6-2 without any specific protection against surges.

The following figure shows the zones defined in the PLC standard IEC 61131-2:


Zone A Local power distribution

Zone B Dedicated power distribution

Zone C Factory mains

- 1 Protection network should be appropriate to reduce Severity Levels from those of outdoor to Zone B.
- 2 Protection network should be appropriate to reduce Severity Levels from those of Zone A to Zone B

It is also suited to be installed in a power generation station/substation according to the generic standard IEC 61000-6-5 for interfaces type 1 and 2, without any specific protection against surges.

The following figure shows the interface types defined in the generic standard IEC 61000-6-5:

- 1 Inside protected area
- 2 Inside interface and/or control room and/or process area not involved in the electrical process
- 3 Inside or from process area involved in the electrical process
- 4 Connections from outside (HV area and external telecommunication)

Protection Against Surges of AC Power Lines for More Severe Environments

The design of these modules are suited to ensure an immunity level for surges of 2 kV Line to ground and 1 kV line to line and do not require any external protection on AC line branch.

If it is intended to install the PLC and its AC I/Os in a IEC 61131-2 zone C or to a IEC 61000-6-5 type 3 or type 4 interface: primary protection provided only and severe interference coupling, it is the responsibility of the system integrator or the customer to take care of the system and protect it in the right manner.

It is possible, providing mitigation measures, to install the PLC and the IO module in a such environment.

All the installation requirements are detailed in the chapter J - Overvoltage protection of the Schneider Electrical Installation Guide. This documentation is available for download on www.schneider-electric.com.

Adding a type 2/class II surge protection device (SPD), for example an iQuick PRD20r modular surge arrester with voltage protection level (Up) ≤1.5 kV, will allow to withstand surges of 4 kV Line to ground and 2 kV line to line.

Wiring Precautions

At a Glance

Discrete inputs/outputs feature protective measures which ensure a high resistance to industrial environmental conditions. Nevertheless, the rules described below must be followed.

External Power Supplies for Sensors and Pre-Actuators

Use quick-blow fuses to protect external sensor and pre-actuator power supplies associated with discrete input/output modules against short-circuits and overloads.

For 40-pin connector discrete input/output modules, link the sensor/pre-actuator power supply to each connector, except in the event where the corresponding channels are not in use and are not assigned to any task.

A A DANGER

IMPROPER GROUNDING HAZARD

Install the 24V supply according to applicable codes. The 0V terminals of the 24V power supplies must be connected to metallic ground and safety ground as close as possible to the supply. This is to ensure personnel safety in the event of a power phase coming into contact with the 24V supply.

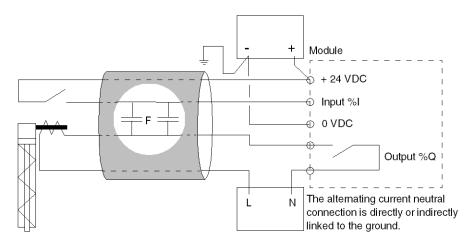
Failure to follow these instructions will result in death or serious injury.

NOTE: If an input/ouput module is present on the PLC, connect the sensor and pre-actuator power supply to the power supply of the module otherwise, an external power supply error occurs causing the input/output LED to flash.

Inputs

Recommendations for use concerning the inputs of discrete modules are as follows:

for 24 VDC inputs and line coupling with an alternating current network:

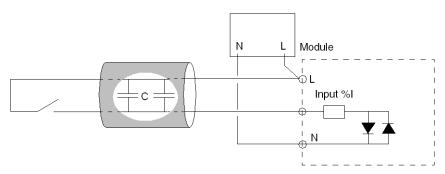

A WARNING

UNEXPECTED EQUIPMENT OPERATION

- Avoid excessive coupling between AC cables and cables relaying signals intended for direct current inputs.
- Follow the cable routing rules.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

This case (excessive coupling) is illustrated in the following circuit diagram.



When the input contact is open, the alternating currents may induce a current in the input which might cause it to be set to 1.

For a 240 VAC/50 Hz line coupling, do not exceed the line capacitance values given in the summary table at the end of this section. For a coupling with a different voltage, use the following formula: Capacitance tolerated = $(Capacity at 240VAC \times 240) / (Line voltage)$

for 24 to 240 VAC inputs and line coupling:

When the line that controls the input is open, the current passes according to the coupling capacitance of the cable (see circuit diagram below).

Do not exceed the line capacitance values given in the summary table below.

The following summary table shows the acceptable line capacitance values.

Module	Maximum coupling capacitance		
24 to 125 VDC inputs			
BMX DDI 1602 BMX DDI 1603 BMX DDI 1604T BMX DDM 16022 BMX DDM 16025	45 nF (1)		
BMX DDI 3202 K BMX DDI 6402 K BMX DDM 3202 K	25 nF (1)		
24 to 140 VAC inputs			
BMX DAI 0805 BMX DAI 1615	50 nF		
BMX DAI 1602	50 nF		
BMX DAI 1603	60 nF		
BMX DAI 0814 BMX DAI 1614 BMX DAI 1604	70 nF		

(1) max. admissible coupling capacitance with a 240 VAC / 50 Hz line **Example:** A standard cable of 1 m in length has a coupling capacity that falls within 100 and 150 pF.

Outputs

For the outputs of discrete I/O modules, follow the recommendations described here.

▲ WARNING

UNEXPECTED EQUIPMENT OPERATION

Use wires of a sufficient diameter to avoid drops in voltage, overheating, and unexpected equipment operation.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Cable Routing

UNEXPECTED EQUIPMENT OPERATION

Observe the precautions below for the wiring system.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

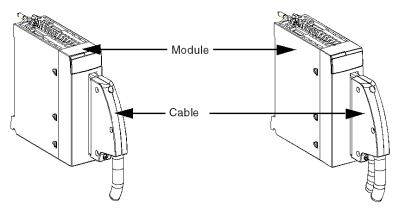
Precautions for use to be taken concerning the wiring system are as follows:

- in order to reduce the number of alternating couplings, separate the power circuit cables (power supplies, power switches, etc.) from input cables (sensors) and output cables (pre-actuators) both inside and outside the equipment
- outside the equipment, place the cables leading to inputs/outputs in covers that make them
 easily distinguishable from those containing wires relaying high energy levels. Place them in
 separate metal cableways which are grounded. Route these various cables at least 100 mm
 (4 in.) apart

How to Connect Discrete Input/Output Modules: Connecting 40-Pin Connector Modules

Introduction

40-pin connector modules are connected to sensors, pre-actuators, or terminals using a cable designed to enable trouble-free direct wire to wire transition of the module's inputs/outputs.


A A DANGER

HAZARD OF ELECTRIC SHOCK, ARC FLASH OR EXPLOSION

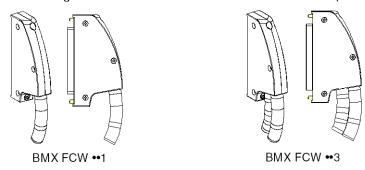
40-pin connectors must be connected or disconnected with sensor and pre-actuator voltage switched off.

Failure to follow these instructions will result in death or serious injury.

The following diagram shows the connection of the cable to the module.

A WARNING

UNEXPECTED EQUIPMENT OPERATION

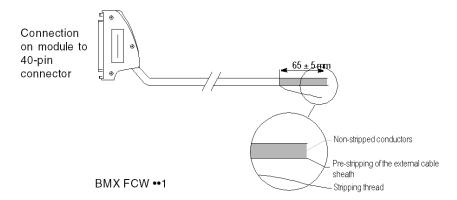

During the installation process, ensure that the connectors are identified with the corresponding modules so that incorrect connection cannot occur. Plugging the wrong connector into a module will result in unexpected equipment operation.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

BMX FCW ••• Connection Cables

They are made up of:

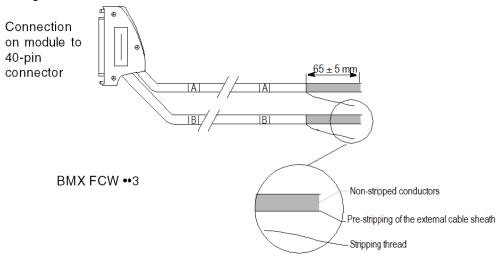
 at one end, a compound-filled 40-pin connector from which extend 1 or 2 cable sheaths, each containing 20 wires with a cross-sectional area of 0.34 mm² (AWG 22)



• at the other end, free wire ends color coded

The cables with 1 cable sheath containing 20 wires designed to connect the 40-pin connectors to the sensors or pre-actuators come in 3 different lengths:

3 meters: BMX FCW 3015 meters: BMX FCW 50110 meters: BMX FCW 1001


The figure below shows the BMX FCW ••1 cables.

The cables with 2 cable sheaths containing 20 wires designed to connect the 40-pin connectors to the sensors or pre-actuators come in 3 different lengths:

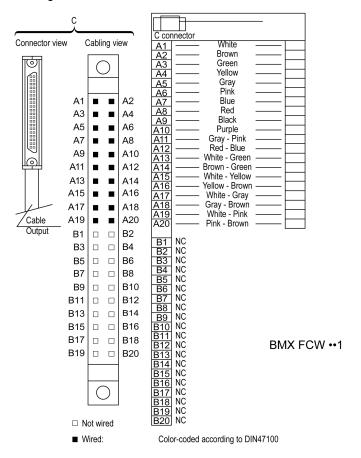
3 meters: BMX FCW 3035 meters: BMX FCW 50310 meters: BMX FCW 1003

The figure below shows the BMX FCW •• 3 cables.

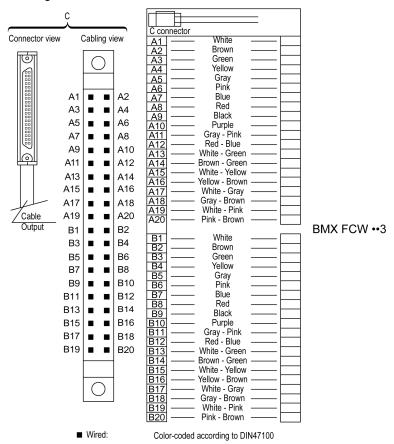
NOTE: A strand of nylon incorporated in the cable allows the cable sheath to be stripped with ease.

NOTE: The maximum torque for tightening BMX FCW ••• cable connection screws is 0.8 N•m (0.59 lb-ft).

▲ WARNING


UNEXPECTED EQUIPMENT OPERATION

Do not exceed the maximum tightening torque. Excessive torque may result in wire breakage, resulting in poor or intermittent connection.


Failure to follow these instructions can result in death, serious injury, or equipment damage.

Connection of BMX FCW ••• Cables

The diagram below shows the connection of BMX FCW ••1 cables:

The diagram below shows the connection of BMX FCW •• 3 cables:

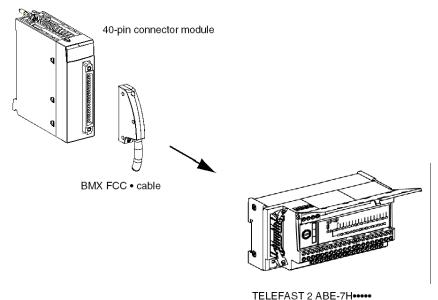
35012474 10/2019

BMX FCW ••• Cables Characteristics

This table presents the general characteristics:

Characteristics		Values
Cable	Sheath material	PVC
	LSZH status	No
Conductor description	Number of conductors	20 for BMX FCW ••140 for BMX FCW ••3
	Gauge	0.34 mm ² (22 AWG)
	Material	Tinned copper
Environmental Operating temperature		-2570 °C (-13158 °F)
Applicable standards		DIN47100

35012474 10/2019


How to Connect Discrete Input/Output Modules: Connecting 40-Pin Connector Modules to TELEFAST Interfaces

At a Glance

The inputs/outputs of discrete 40-pin connector modules are connected to TELEFAST quick-wiring connection and adaptation interfaces using specific cables for 40-pin to HE10 connectors.

Illustration

The drawing below shows the connection of a discrete 40-pin connector module to a TELEFAST interface.

35012474 10/2019 85

BMX FCC ••• Connection Cables

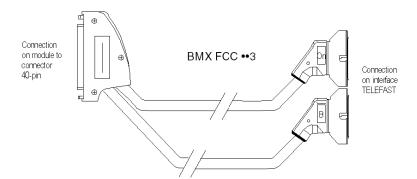
The cables designed for connecting 40-pin connectors to 1xHE10 come in 6 different lengths:

0.5 meters, 20 wires: BMX FCC 0511 meter, 20 wires: BMX FCC 101

2 meters, 20 wires: BMX FCC 201
3 meters, 20 wires: BMX FCC 301
5 meters, 20 wires: BMX FCC 501

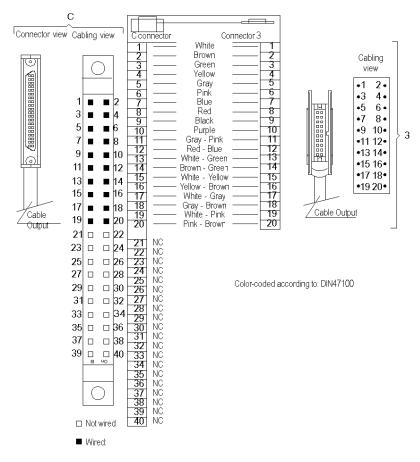
• 10 meters, 20 wires; BMX FCC 1001

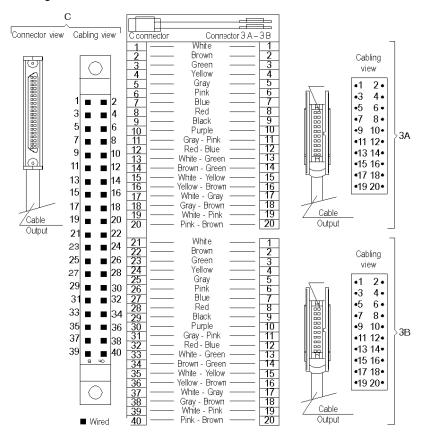
The cables designed for connecting 40-pin connectors to 2xHE10 come in 6 different lengths:


• 0.5 meters, 20 wires: BMX FCC 053

• 1 meter, 20 wires: BMX FCC 103

• 2 meters, 20 wires: BMX FCC 203


3 meters, 20 wires: BMX FCC 3035 meters, 20 wires: BMX FCC 503


• 10 meters, 20 wires: BMX FCC 1003

Connection of BMX FCC ••• Cables

The diagram below shows the connection of BMX FCC ••1 cables.

The diagram below shows the connection of BMX FCC ••3 cables.

Color-coded according to: DIN47100

NOTE: The maximum torque for tightening BMX FCC ••• cable connection screws is 0,5 N•m (0.37 lb-ft).

WARNING

UNEXPECTED EQUIPMENT OPERATION

Do not exceed the maximum tightening torque. Excessive torque may result in wire breakage, resulting in poor or intermittent connection.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

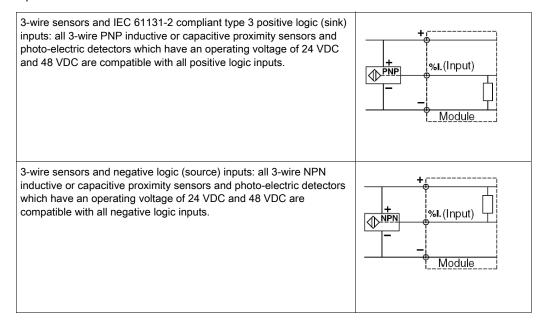
BMX FCC ••• Cables Characteristics

This table presents the general characteristics:

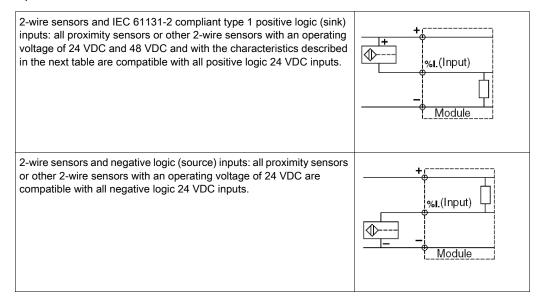
Characteristics		Values
Cable	Sheath material	PVC
	LSZH status	No
Conductor description	Number of conductors	20 for BMX FCC ••140 for BMX FCC ••3
	Gauge	0.34 mm ² (22 AWG)
	Material	Tinned copper
Environmental Operating temperature		-2570 °C (-13158 °F)
Applicable standards		DIN47100

35012474 10/2019

Sensor/Input Compatibility and Pre-actuator/Output Compatibility


At a Glance

The compatibility between sensors and discrete module inputs depends on the type of sensor used.


Similarly, the compatibility between pre-actuators and discrete module outputs depends on the type of pre-actuator used.

Sensor/Input Compatibility

The following table presents the compatibility between 3-wire sensors and 24 VDC and 48 VDC inputs.

The following table presents the compatibility between 2-wire sensors and 24 VDC and 48 VDC inputs.

Compatibility between 2-wire sensors and 24/48 VAC and 120 VAC inputs:

All IEC 60947-5-2 compliant 2-wire AC proximity sensors able to withstand 100...120 VAC are compatible with all IEC 61131-2 type 1 and type 3 compliant 110...20 VAC inputs.

The following tables provide a summary of compatibility between sensors and discrete input/output module inputs.

Types of proximity sensor	Types of input			
	24 VDC Positive logic	48 VDC Type 1 Positive logic	24 VDC Type 3 Positive logic	24/48 VDC Negative logic
All PNP-type 3-wire (DC) proximity sensors	X	X	X	-
All NPN-type 3-wire (DC) proximity sensors	-	-	-	Χ
Telemecanique or other brand 2-wire (DC) proximity sensors with the following characteristics: • Voltage drop in closed state ≤ 7 V • Minimum switched current ≤ 2.5 mA • Residual current in open state ≤ 1.5 mA	-	Х	Х	-
Telemecanique or other brand 2-wire (DC) proximity sensors with the following characteristics: ■ Voltage drop in closed state ≤ 4 V ■ Minimum switched current ≤ 1 mA ■ Residual current in open state ≤ 0.5 mA	Х	х	Х	-

X compatible

- not compatible

DC DC voltage operation

Types of proximity sensor	Types of input		
	24 VAC Type 1	48 VAC Type 3	100-120 VAC Type 3
2-wire (AC/DC) proximity sensor (see note)	X	X	X
2-wire (AC) proximity sensor	Х	Х	Х

X compatible

AC AC voltage operation

AC/DC AC or DC voltage operation

NOTE: 24 VDC inputs can be used in positive (sink) or negative (source) logic but are not IEC compliant.

Compatibility of Pre-Actuators with Outputs

Compatibility of DC Pre-actuators with Outputs:

Comply with the output's maximum current and maximum switching frequency as specified in the module characteristics.

NOTE: Where low consumption pre-actuators are used, special attention must be paid to the leakage current of the idle output, to ensure that the maximum current is correctly calculated:

| max = | nominal + | leakage

Given that:

I nominal = Current required to operate by the pre-actuator

I leakage = Maximum leakage current in idle output state

Compatibility of Tungsten Filament Lamps and Static Outputs (Static Current):

For outputs with protection against short circuits, the maximum power of the tungsten filament lamps specified in the module characteristics must comply. If not, the lamp's pick-up current might cause a tripped output at the time of power-up.

Compatibility of AC Pre-actuators and Relay Outputs:

Inductive AC pre-actuators have a pick-up current of up to 10 times their holding current for a duration of 2/F seconds (F = alternating current frequency). Relay outputs are therefore set to withstand these conditions (AC14 and AC15). The table of characteristics for relay outputs gives the maximum authorized running power (in AV) according to the number of operations.

SHORTENED RELAY LIFE

Ensure that currents switched by the relay outputs do not exceed the relay ratings. Excessive currents will shorten relay life.

Failure to follow these instructions can result in injury or equipment damage.

Chapter 3

Discrete Input/Output Module Diagnostic Processing

Subject of this Section

This section explains the processing of hardware detected faults related to discrete input/output modules.

What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
General Protective Measures	96
Module and Channel Status Display	97
Diagnostics	102
Checking the Connection	106

General Protective Measures

At a Glance

Some general protective measures are integrated into the channels of discrete input/ouput direct current modules.

DC Outputs

Every static output (except where specifically labeled "Non-Protected"), features a protective device which allows the following to be detected when an output is active:

- An overload or short circuit. Events such as these cause the output to be deactivated (tripped)
 and the event to be indicated on the display on the front panel of the module (the LED
 corresponding to the channel flashes, the I/O LED comes on).
- Reversal of polarity. An event such as this causes the power supply to short circuit without
 damaging the module. In order to obtain optimal protection, a quick-blow fuse must be installed
 on the power supply and upstream from the pre-actuators.
- Inductive overvoltage. Each output is individually protected against inductive overvoltage and
 has a fast electro-magnet demagnetization circuit using a zener diode which allows the
 mechanical cycle of certain fast machines to be reduced.

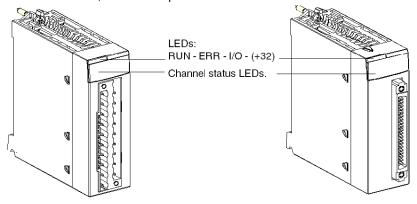
DC Inputs

24 VDC and 48 VDC inputs are of constant current type. The input current is constant for a voltage greater than:

- 15 V for 24 VDC inputs
- 25 V for the 48 VDC inputs

This characteristic has the following advantages:

- quaranteed minimum current in active state in accordance with IEC standards
- limited consumed current when input voltage increases, to avoid the module overheating unnecessarily
- reduced consumed current to the power supply sensor supplied by the PLC power supply or a process power supply


Module and Channel Status Display

At a Glance

The discrete I/O modules are equipped with a display block featuring LEDs that displays the module's channels status the overall module status.

Illustration

The figure below shows the position of the channel status display LEDs as well as the 3 (or 4) module status LEDs, on the front panel of the discrete I/O modules.

Description

The following table explains how the LEDs located on the discrete I/O display block operate.

LEDs	Continually Lit	Flashing	Off	
RUN (green)	module operating normally	N/A	module inoperative or off	
ERR (red)	internal event: Module analysis needed	Communication loss between the discrete module and the CPU	no detected internal error	
I/O (red)	external event: overload, short circuit, sensor/pre-actuator voltage error	Terminal block incorrectly wired	no detected external error	
+32 Green	selection of channels 32 to 63	N/A	selection of channels 0 to 31	
Channel status	channel at 1	channel error, overload, short circuit, or open wire detected ⁽¹⁾	channel at 0	

- (1) When channel status is open wire detected, the flashing timing is the following:
 - O 64 ms ON
 - O 64 ms OFF
 - O 64 ms ON
 - O 2000 ms OFF

NOTE: The **+32** LED is only present on the 64-channel modules. It is enabled/disabled with a push-button located on the top of the module. By default, the first 32 channels are displayed.

NOTE: For a mixed input/output module, the first line of channel status LEDs represents the inputs (for example, for a mixed 16 input/16 output module, LEDs 0 to 15 represent the inputs and LEDs 16 to 31 represent the outputs).

NOTE: After the sensor power outage, the I/O (red) LED of the following modules switch on and the last recorded position of the sensor is displayed by the input channel status LED's:

- BMX DDI 1602
- BMX DDI 1603
- BMX DDI 1604T
- BMX DDI 3202K
- BMX DDI 6402K
- BMX DDM 16022
- BMX DDM 3202K
- BMX DDM 16025

▲ WARNING

CHANNEL LED INFORMATION NOT MATCHING SENSORS POSITION

After a sensor power outage:

- The I/O error LED is on
- Do not take into account the input LEDs information (they show the last recorded position of the sensors, not their real positions)
- Check the real positions on the sensors.


Failure to follow these instructions can result in death, serious injury, or equipment damage.

Display Panels

When a voltage is present on an input or output, the corresponding LED is lit.

Display of internal or external events is only effective once the module has been configured. After powering-up or a cold start, all the LEDs flash twice (for 2 seconds) to show that the module is operational. When an event is detected, the channel status is recorded until the cause of the event is cleared.

There are several display blocks depending on the type of discrete I/O module.

(1) The BMX DDM 16022 and BMX DDM 16025 mixed input/output modules have 2 groups of 8 channels. The input group is represented by channels 0 to 7 and the output group is represented by channels 16 to 23.

Modules	Display Panel illustration			Description
BMX DDI 6402 K BMX DDO 6402 K	Run	Err	I/O +32	These modules have: • 3 module status LEDs: RUN - ERR - I/O
	0 1	2 3	4 5 6 7	• a +32 LED to display channels 32 to 63
	8 9	10 11 1	2 13 14 15	32 channel status LEDsa switch to display channels 32 to 63
	16 17	18 19 2	20 21 22 23	a switch to display channels 32 to 63
	24 25	26 27 2	28 29 30 31	
	24 25	26 27 2	28 29 30 31	

(1) The BMX DDM 16022 and BMX DDM 16025 mixed input/output modules have 2 groups of 8 channels. The input group is represented by channels 0 to 7 and the output group is represented by channels 16 to 23.

35012474 10/2019

Diagnostics

At a Glance

The diagnostics function detects any conditions that may affect module operation. Three diagnostic groups can be identified:

- internal events
- external events
- other events

Internal Events

Internal events concern all internal module conditions and all communication loss occurrences that prevent a discrete input/output module from operating correctly.

A communication loss can be caused by:

- a hardware detected fault at rack bus level
- a processor malfunction or power cable circuit open or short
- a power cable circuit open or short

External Events

External events include:

- Overload and Short-Circuit: Static output modules contain a device for checking the load status.
 In the event of an overload or short-circuit of one or more outputs, they are tripped to open circuit. The status will be shown on the front panel of the module the LEDs corresponding to the tripped outputs will flash and the red I/O LED will light up.
- Sensor Voltage Error: All input modules contain a device for checking sensor voltage for all
 module channels. This device checks that sensor and module power supply voltages are of a
 sufficiently high level for correct operation of the module's input channels. When sensor voltage
 is less than or equal to the defined threshold, the status is shown by the I/O LED lighting up on
 front panel of the module.
- Pre-actuator Voltage Error: All 24 VDC and 48 VDC transistor output modules contain a device for checking the pre-actuator voltage of all module channels. This device checks that pre-actuator and module power supply voltages are of a sufficiently high level for correct operation of the module's output channels. This voltage must be greater than 18 V (24 VDC supply) or 36 V (48 VDC supply) for modules with direct current static outputs. In the event of pre-actuator voltage being less than or equal to this threshold, the error is shown by the I/O LED lighting up on the front panel of the module.
- Open wire Error: Some modules (for example BMXDAI1614/DAI1615) can detect the open wire
 error by checking the leakage current in the loop. In order to get the appropriate leakage current,
 an external resistor might be required. See details in the characteristic page of the specific
 module.

NOTE: The sensor/pre-actuator voltage check is unique to terminal block modules. In 32 or 64-channel connector modules, there is one checking device per connector (equivalent to one per group of 16 channels).

A sensor or pre-actuator voltage error leads to all the inputs and outputs of the group affected by the error (i.e. groups of 8 or 16 channels for a terminal block module and the group of 16 channels for a 32 or 64-channel connector module) to be set to inactive.

After a power sensor outage, if the **Supply monitoring** check box is not selected in the module configuration screen then the digital input can stay active.

A WARNING

DIGITAL INPUT STATE INACTIVE AFTER A SENSOR POWER OUTAGE

Do not click to clear the **Supply monitoring** check box in the module configuration screen to guarantee the digital input state inactive after sensor power outage.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

To access the **Supply monitoring** check box, refer to chapter *How to Modify the External Power Supply Error Monitoring Parameter (see page 400).*

NOTE: Relay output modules do not contain pre-actuator voltage checking devices.

Other Events

The other errors category includes loss of power to the modules.

Description

The following table can be used to determine the module's status on the basis of the LEDs located on the discrete input/output modules' display panel.

State of module		LEDs		
		RUN (green)	ERR (red)	I/O (red)
Normal operation			0	\circ
Internal events	Module analysis needed	0	•	0
	CPU communication interruption	•	\otimes	0
External events	Overload, short circuit, sensor/pre- actuator voltage error, open wire	•	0	•
Configuration	Self-test of the module at start-up	\otimes	\otimes	\otimes
	Not configured module	0	\otimes	0
Other events	Module loss of power	0	0	0
Key:		•		
		LED on		
\otimes		LED flashing		
0		LED off		

35012474 10/2019

NOTE: After the sensor power outage, the I/O (red) LED of the following modules switch on and the last recorded position of the sensor is displayed by the input channel status LED's:

- BMX DDI 1602
- BMX DDI 1603
- BMX DDI 1604T
- BMX DDI 3202K
- BMX DDI 6402K
- BMX DDM 16022
- BMX DDM 3202K
- BMX DDM 16025

▲ WARNING

CHANNEL LED INFORMATION NOT MATCHING SENSORS POSITION

After a sensor power outage:

- The I/O error LED is on
- Do not take into account the input LEDs information (they show the last recorded position of the sensors, not their real positions)
- Check the real positions on the sensors.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Checking the Connection

At a Glance

In order to check the discrete I/O connection, ensure that:

- sensor data is registered by the corresponding inputs and by the processor
- control orders from the processor are registered by the outputs and transmitted to the corresponding pre-actuators

A WARNING

UNEXPECTED EQUIPMENT OPERATION

Active outputs can activate machine movements.

All power must be turned off before this check is carried out:

- 1. remove power fuses from the motor controls
- 2. turn off the power of hydraulic and pneumatic units
- 3. power up the PLC fitted with its Discrete I/O modules

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Description

After this, it is possible to check the connection of the Discrete I/O modules:

- without a terminal: activate each sensor and check whether the corresponding input LED changes. If it remains unchanged, check the wiring and correct operation of the sensor.
- with a terminal (more in-depth check on the connection of the inputs/outputs). An application
 with configured I/Os in the PLC is required, even if it is empty (in that case, do not declare any
 module in the 'FAST task').
 - This check can be carried out with the PLC in RUN mode, from a PC equipped with Control Expert software giving access to debug functions.
 - This check can also be carried out with an entire application loaded in the memory. In this
 case, stop the processing of the program by de-activating the MAST, FAST and event
 (see page 399)tasks by setting system bits %S30, %S31, and %S38 to 0.

Input Check

The following table shows the procedure for checking input connections.

Step	p Action	
1	Activate each sensor and check that the corresponding input LED changes status.	
2	Check on the terminal screen that the corresponding input bit (%I•) also changes status.	

Output Check

The following table shows the procedure for checking output connections.

Step	Action	
1	From the terminal, set each bit (%Q•) that corresponds to an output to 1 then 0.	
2	Check that the corresponding output LED turns on then off and that the corresponding pre-actuator activates then de-activates.	

35012474 10/2019

Chapter 4 BMX DDI 1602 Input Modules

Subject of this Section

This section presents the BMX DDI 1602 module, its characteristics, and explains how it is connected to the various sensors.

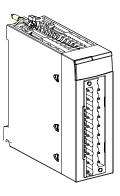
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	110
Characteristics	111
Connecting the Module	113

Introduction

Function


The BMX DDI 1602 module is a 24 VDC discrete module connected via a 20-pin terminal block. It is a positive logic (or sink) module: its 16 input channels receive current from the sensors.

Ruggedized Version

The BMX DDI 1602H (hardened) equipment is the ruggedized version of the BMX DDI 1602 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

The characteristics in the table below apply to the modules BMX DDI 1602 and BMX DDI 1602H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Characteristics

for input redundancy.

This table presents the general characteristics for the BMX DDI 1602 and BMX DDI 1602H modules:

Module type		24 VDC positive logic inputs		
Operating temperature	BMX DDI 1602	2	060 °C (32140 °F)	
	BMX DDI 1602	2H	-2570 °C (-13158 °F)	
Nominal input values		Voltage	24 VDC	
		Current	3.5 mA	
Threshold input values	At 1	Voltage	≥ 11 V	
		Current	> 2 mA (for U ≥ 11 V)	
	At 0	Voltage	5 V	
		Current	< 1.5 mA	
	Sensor supply (including ripple for standard module)		1930 V (possible up to 34 V, limited to 1 hour/day)	
Input impedance	At nominal U		6.8 kΩ	
Response time	Typical		4 ms	
	Maximum		7 ms	
Reliability	MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)		738 749	
Reverse polarity			Protected	
Fuse type	Internal		None	
	External		1 fast blow fuse of 0.5 A	
Input type		Current sink		
Input type in compliance w	ith IEC 61131-2 sta	andard	Type 3	
(1) This characteristic is us	ed to connect seve	ral inputs to the same m	odule in parallel or to different modules	

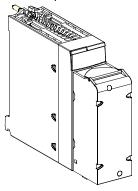
2-wire / 3-wire proximity sensor compatibility (IEC 60947-5-2 standard compliant) Dielectric strength Resistance of insulation		2-wire (DC), and 3-wire (DC) PNP any type <i>(see page 90)</i> 1500 V actual, 50 / 60 Hz for 1 min. >10 MΩ (below 500 VDC)				
				Paralleling of inputs ⁽¹⁾		Yes
				Sensor voltage: monitoring	ОК	> 18 VDC
threshold	Error	< 14 VDC				
Sensor voltage: monitoring response time at 24 V (-15% +20%)	On appearance	1 ms < T < 3 ms				
	On disappearance	8 ms < T < 30 ms				
Power consumption 3.3 V	Typical	76 mA				
	Maximum	107 mA				
Sensor supply consumption	Typical	46 mA				
	Maximum	73 mA				
Power dissipation		2.5 W max.				
(1) This characteristic is used	to connect several inputs to the same mo	odule in parallel or to different modules				

NOTE: For the BMX DDI 1602H, the maximum value of the sensor power supply must not exceed 26.4 V when operated at 70 °C (158 °F).

A WARNING

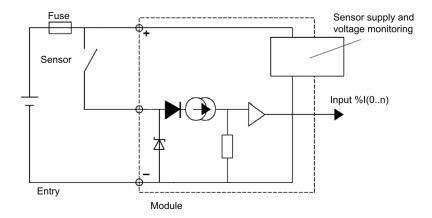
OVERHEATING MODULE

for input redundancy.


Do not operate the BMX DDI 1602H at 70 $^{\circ}$ C (158 $^{\circ}$ F) if the sensor power supply is greater than 26.4 V or less than 21.1 V.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Connecting the Module


At a Glance

The BMX DDI 1602 module is fitted with a removable 20-pin terminal block for the connection of sixteen input channels.

Input Circuit Diagram

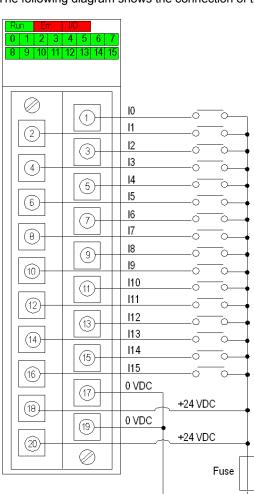
The following diagram shows the circuit of a direct current input (positive logic).

Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.


Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF INPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the sensors.

power supply: 24 VDC fuse: fast blow fuse of 0.5A

Sensor Power Outage

After a power sensor outage, if the **Supply monitoring** check box is not selected in the module configuration screen then the digital input can stay active.

A WARNING

DIGITAL INPUT STATE INACTIVE AFTER A SENSOR POWER OUTAGE

Do not click to clear the **Supply monitoring** check box in the module configuration screen to guarantee the digital input state inactive after sensor power outage.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

To access the **Supply monitoring** check box, refer to chapter *How to Modify the External Power Supply Error Monitoring Parameter (see page 400).*

After the sensor power outage, the I/O (red) LED of the module switches on and the last recorded position of the sensor is displayed by the input channel status LED's.

A WARNING

CHANNEL LED INFORMATION NOT MATCHING SENSORS POSITION

After a sensor power outage:

- The I/O error LED is on
- Do not take into account the input LEDs information (they show the last recorded position of the sensors, not their real positions)
- Check the real positions on the sensors.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Chapter 5 BMX DDI 1603 Input Modules

Subject of this Section

This section presents the BMX DDI 1603 module, its characteristics, and explains how it is connected to the various sensors.

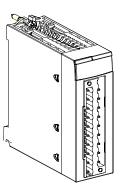
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	118
Characteristics	119
Connecting the Module	121

Introduction

Function


The BMX DDI 1603 module is a 48 VDC discrete module connected via a 20-pin terminal block. It is a positive logic (or sink) module: its 16 input channels receive current from the sensors.

Ruggedized Version

The BMX DDI 1603H (hardened) equipment is the ruggedized version of the BMX DDI 1603 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

The characteristics in the table below apply to the modules BMX DDI 1603 and BMX DDI 1603H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Characteristics

This table presents the general characteristics for the BMX DDI 1603 and BMX DDI 1603H modules:

Module type			48 VDC positive logic inputs	
Operating temperature	erating temperature BMX DDI 1603		060 °C (32140 °F)	
	BMX DD	I 1603H	-2570 °C (-13158 °F)	
Nominal input values		Voltage	48 VDC	
		Current	2.5 mA	
Threshold input values	At 1	Voltage	≥ 34 V	
		Current	> 2 mA (for U ≥ 34 V)	
	At 0	Voltage	10 V	
		Current	< 0.5 mA	
	Sensor s	117	3660 V	
Input impedance	At nomir	nal U	19.2 kΩ	
Response time	Typical		4 ms	
	Maximur	n	7 ms	
Reliability	operation	or continuous n in hours at temperature 36°F)	738 749	
Reverse polarity			Protected	
Fuse type	Internal		None	
	External		Fast blow fuse of 0.5 A	
Input type		Current sink		
Input type in compliance with IE	C 61131-2 standa	ard	Type 1	
(1) This characteristic is used to for input redundancy.	connect several in	nputs to the sam	e module in parallel or to different modules	

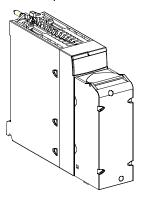
2-wire / 3-wire proximity sensor compatibility (IEC 60947-5-2 standard compliant) Dielectric strength		2-wire (DC), and 3-wire (DC) PNP any type (see page 90)
		1 500 V actual, 50 / 60 Hz for 1 min.
Resistance of insulation		>10 MΩ (below 500 VDC)
Paralleling of inputs ⁽¹⁾		Yes
Sensor voltage: monitoring threshold	ОК	> 36 VDC
	Error	< 24 VDC
Sensor voltage: monitoring response time at 24 V (-15% +20%)	On appearance	1 ms < T < 3 ms
	On disappearance	8 ms < T < 30 ms
Power consumption 3.3 V	Typical	76 mA
	Maximum	107 mA
Sensor supply consumption	Typical	47 mA
	Maximum	60 mA
Power dissipation		3.6 W max.
·	at a conservation to the theorem	5.0 W IIIAA.

⁽¹⁾ This characteristic is used to connect several inputs to the same module in parallel or to different modules for input redundancy.

NOTE: For the **BMX DDI 1603H**, the maximum value of the sensor power supply must not exceed 52.8 V when operated at $70 \,^{\circ}\text{C}$ ($158 \,^{\circ}\text{F}$).

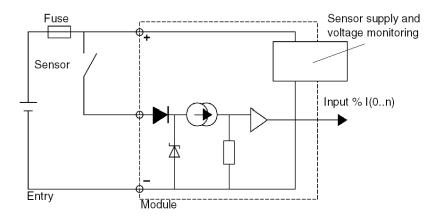
A WARNING

OVERHEATING MODULE


Do not operate the **BMX DDI 1603H** at 70 $^{\circ}$ C (158 $^{\circ}$ F) if the sensor power supply is greater than 52.8 V or less than 42.2 V.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Connecting the Module


At a Glance

The BMX DDI 1603 module is fitted with a removable 20-pin terminal block for the connection of sixteen input channels.

Input Circuit Diagram

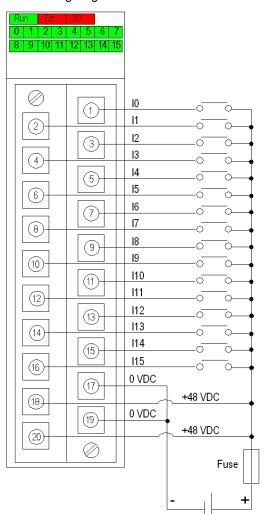
The following diagram shows the circuit of a direct current input (positive logic).

Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.


Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF INPUT FUNCTION

Install the correct type of fuse with the correct rating.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the sensors.

power supply: 48 VDC **fuse:** fast blow fuse of 0.5A

Sensor Power Outage

After a power sensor outage, if the **Supply monitoring** check box is not selected in the module configuration screen then the digital input can stay active.

A WARNING

DIGITAL INPUT STATE INACTIVE AFTER A SENSOR POWER OUTAGE

Do not click to clear the **Supply monitoring** check box in the module configuration screen to guarantee the digital input state inactive after sensor power outage.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

To access the **Supply monitoring** check box, refer to chapter *How to Modify the External Power Supply Error Monitoring Parameter (see page 400).*

After the sensor power outage, the I/O (red) LED of the module switches on and the last recorded position of the sensor is displayed by the input channel status LED's.

A WARNING

CHANNEL LED INFORMATION NOT MATCHING SENSORS POSITION

After a sensor power outage:

- The I/O error LED is on
- Do not take into account the input LEDs information (they show the last recorded position of the sensors, not their real positions)
- Check the real positions on the sensors.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Chapter 6 BMX DDI 1604T Input Modules

Subject of this Section

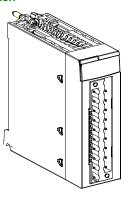
This section presents the BMX DDI 1604T module, its characteristics, and explains how it is connected to the various sensors.

NOTE: There is no H version of this module.

What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	126
Characteristics	127
Connecting the Module	130


Introduction

Function

The BMX DDI 1604T module is a 125 VDC discrete module connected via a 20-pin terminal block. It is a positive logic (or sink) module: its 16 input channels receive current from the sensors.

NOTE: BMX DDI 1604T provides an extended temperature range, as listed in the General Characteristics *(see page 127)* topic of this chapter.

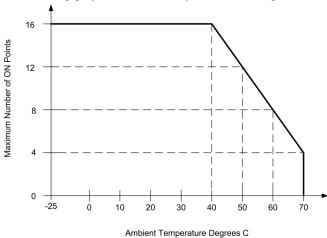
Illustration

Characteristics

Altitude Operating Conditions

The characteristics in the table below apply to the module BMX DDI 1604T for use at altitude up to 2000 m (6560 ft). When the module operates above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*


General Characteristics

This table presents the general characteristics for the BMX DDI 1604T module:

Module type			125 VDC positive logic inputs	
Operating temperature			-2570 °C (-13158 °F)	
			Apply the temperature derating curve (see the graph below the table).	
Nominal input values		Voltage	125 VDC	
		Current	2.4 mA	
Threshold input values	At 1	Voltage	≥ 88 VDC	
		Current	> 2 mA (for U ≥ 88 V)	
	At 0	Voltage	36 VDC	
		Current	< 0.5 mA	
	Sensor supply (including ripple for standard module)		100150 V (156 V including ripple)	
Input impedance	At nominal U		50 kΩ	
Response time	71		5 ms	
			9 ms	
Reliability	MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)		888 402	
Reverse polarity			Protected	
Fuse type	Internal		None	
	External		Fast blow fuse of 0.5 A	
Dielectric strength			2500 VDC for 1 min.	
Resistance of insulation		>10 MΩ (below 500 VDC)		
Type of input		Current sink		
Paralleling of inputs			Yes	

I/O LED off	> 100 VDC	
I/O LED on	< 80 VDC	
On appearance	8 ms < T < 30 ms	
On disappearance	1 ms < T < 5 ms	
Typical	76 mA	
Maximum	107 mA	
Typical	1.85 W	
Maximum	2.85 W	
Typical	3.07 W	
Maximum	4.61 W	
Typical	4.29 W	
Maximum	6.37 W	
Typical	5.51 W	
Maximum	8.13 W	
	3.2 W max. at 70 °C	
	5.0 W max. at 60 °C	
Maximum input voltage		
	I/O LED on On appearance On disappearance Typical Maximum Typical	

The following graph shows the temperature derating of BMX DDI 1604T.

NOTE: For the **BMX DDI 1604T**, the maximum value of the sensor power supply must not exceed 150 V when operated at 70 °C (158 °F).

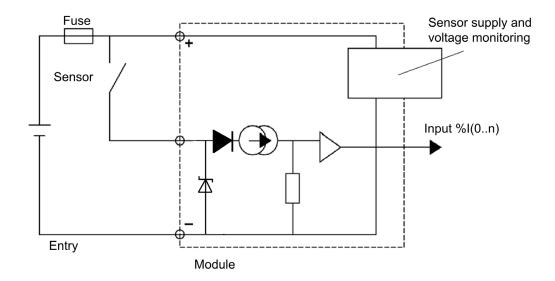
A WARNING

OVERHEATING MODULE

Do not operate the **BMX DDI 1604T** at 70 $^{\circ}$ C (158 $^{\circ}$ F) if the sensor power supply is greater than 150 V or less than 100 V.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Connecting the Module


At a Glance

The BMX DDI 1604T module is fitted with a removable 20-pin terminal block for the connection of sixteen input channels.

Input Circuit Diagram

The following diagram shows the circuit of a direct current input (positive logic).

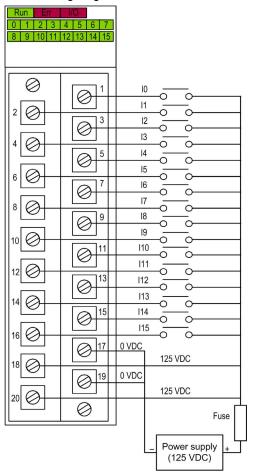
Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.

Failure to follow these instructions will result in death or serious injury.


A CAUTION

LOSS OF INPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the sensors.

Fuse Fast blow fuse of 0.5 A

Sensor Power Outage

After a power sensor outage, if the **Supply monitoring** check box is not selected in the module configuration screen then the digital input can stay active.

A WARNING

DIGITAL INPUT STATE INACTIVE AFTER A SENSOR POWER OUTAGE

Do not click to clear the **Supply monitoring** check box in the module configuration screen to guarantee the digital input state inactive after sensor power outage.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

To access the **Supply monitoring** check box, refer to chapter *How to Modify the External Power Supply Error Monitoring Parameter (see page 400).*

After the sensor power outage, the I/O (red) LED of the module switches on and the last recorded position of the sensor is displayed by the input channel status LED's.

A WARNING

CHANNEL LED INFORMATION NOT MATCHING SENSORS POSITION

After a sensor power outage:

- The I/O error LED is on
- Do not take into account the input LEDs information (they show the last recorded position of the sensors, not their real positions)
- Check the real positions on the sensors.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Chapter 7 BMX DAI 1602 Input Modules

Subject of this Section

This section presents the BMX DAI 1602 module, its characteristics, and explains how it is connected to the various sensors.

What Is in This Chapter?

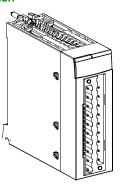
This chapter contains the following topics:

Topic	Page
Introduction	136
Characteristics	137
Connecting the Module	139

Introduction

Function

The BMX DAI 1602 module is a 24 VAC discrete module connected via a 20-pin terminal block. This module has 16 input channels that operate on alternating current.


This module can also be used with 24 VDC, with positive or negative logic.

Ruggedized Version

The BMX DAI 1602H (hardened) equipment is the ruggedized version of the BMX DAI 1602 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

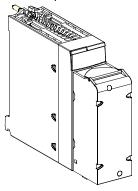
Altitude Operating Conditions

The characteristics in the table below apply to the modules BMX DAI 1602 and BMX DAI 1602H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

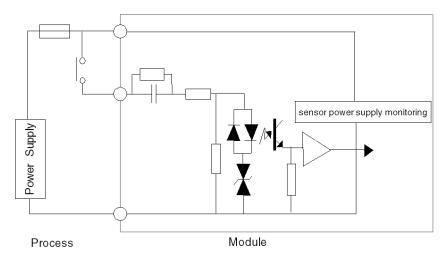
General Characteristics

This table presents the general characteristics for the BMX DAI 1602 and BMX DAI 1602H modules:


BMX DAI 1602(H) Module			24 VAC inputs	24 VDC inputs
Nominal input values		Voltage	24 VAC	24 VDC
		Current	3 mA	3.9 mA
		Frequency	50/60Hz	(n/a)
Threshold input values	At 1	Voltage	≥ 15 V	≥ 15 V
		Current	≥ 2 mA	≥ 2 mA
	At 0	Voltage	≤ 5 V	≤ 5 V
		Current	≤ 1 mA	≤ 0.5 mA
	Frequency		47 Hz to 63 Hz	(n/a)
	Sensor supply (in	cluding ripple)	2026 V	1930 V
	Peak of current on enabling (at nominal U)		5 mA	(n/a)
Input impedance	At nominal U and f = 55 Hz		6 kΩ	
Response time			15 ms	
			20 ms	
Input type		Resistive		
Input type in compliance with IE	C 61131-2 standa	rd	Type 1	(n/a)
2-wire / 3-wire proximity sensor compatibility (IEC 60947-5-2 standard compliant)		2-wire (AC) (see page 90)	2-wire (DC), and 3-wire (DC) PNP any type (see page 90)	
Reliability	MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)		1 307 702	
Dielectric strength	Dielectric strength		1500 V actual, 50 / 60 Hz for 1 min.	
Resistance of insulation		>10 MΩ (below 500 VDC)		

BMX DAI 1602(H) Module		24 VAC inputs	24 VDC inputs		
Fuse type	Internal	None			
	External	Fast blow fuse of 0	Fast blow fuse of 0.5 A		
Sensor voltage: monitoring	OK	> 18 V	> 18 V		
threshold	Error	< 14 V			
Sensor voltage: monitoring	On appearance	20 ms < T < 50 ms			
response time at 24 V (-15% +20%)	On disappearance	5 ms < T < 15 ms			
Power consumption 3.3 V	Typical	76 mA			
	Maximum	107 mA			
Sensor supply consumption	Typical	1.45 mA	1.45 mA		
	Maximum	1.8 mA			
Power dissipation		3 W max.	3 W max.		
Operating temperature	BMX DAI 1602	060 °C (32140 °F)			
	BMX DAI 1602H	-2570 °C (-131	58 °F)		

Connecting the Module


At a Glance

The BMX DAI 1602 module is fitted with a removable 20-pin terminal block for the connection of sixteen input channels.

Input Circuit Diagram

The following diagram shows the circuit of an alternating current input.

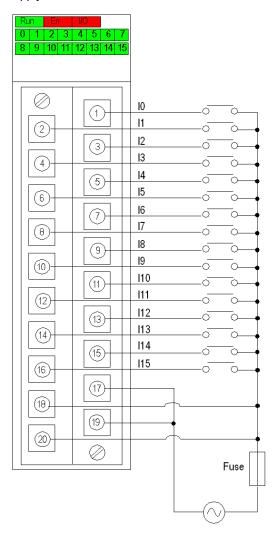
Module Connection (AC Power Supply)

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltage before connecting or disconnecting the module.

Failure to follow these instructions will result in death or serious injury.


A CAUTION

LOSS OF OUTPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the sensors, using an AC power supply.

power supply: 24 VAC **fuse:** fast blow fuse of 0.5A

Module Connection (DC Power Supply)

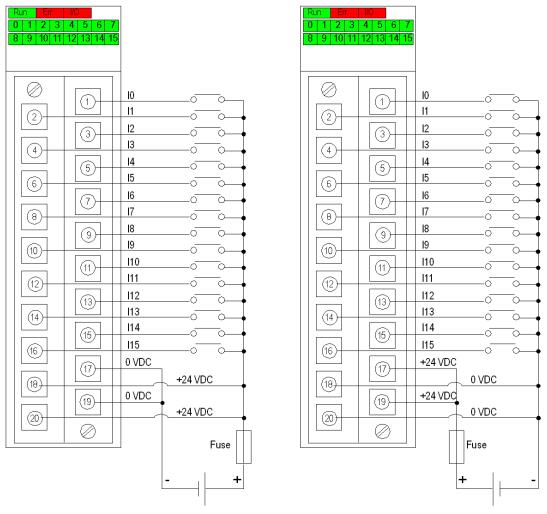
This module can also be used with 24 VDC, with positive or negative logic.

A A DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltage before connecting or disconnecting the module.

Failure to follow these instructions will result in death or serious injury.


A CAUTION

LOSS OF OUTPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the sensors, using a DC power supply.

Positive Logic Wiring

power supply: 24 VDC fuse: fast blow fuse of 0.5A

Negative Logic Wiring

Chapter 8 BMX DAI 1603 Input Modules

Subject of this Section

This section presents the BMX DAI 1603 module, its characteristics, and explains how it is connected to the various sensors.

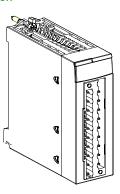
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	146
Characteristics	147
Connecting the Module	149

Introduction

Function


The BMX DAI 1603 module is a 48 VAC discrete module connected via a 20-pin terminal block. This module has 16 input channels that operate on alternating current.

Ruggedized Version

The BMX DAI 1603H (hardened) equipment is the ruggedized version of the BMX DAI 1603 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

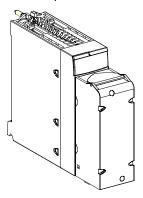
Altitude Operating Conditions

The characteristics in the table below apply to the modules BMX DAI 1603 and BMX DAI 1603H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

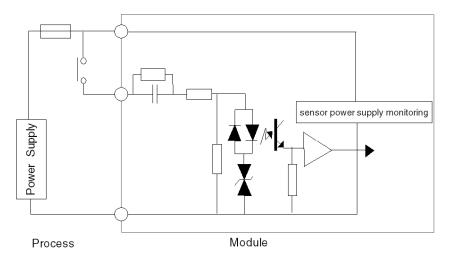
General Characteristics

This table presents the general characteristics for the BMX DAI 1603 and BMX DAI 1603H modules:


Module type			48 VAC inputs
Operating temperature	BMX DAI 16	603	060 °C (32140 °F)
	BMX DAI 16	603H	-2570 °C (-13158 °F)
Nominal input values		Voltage	48 VAC
		Current	5 mA
		Frequency	50/60Hz
Threshold input values	At 1	Voltage	≥ 34 V
		Current	≥ 2 mA
	At 0	Voltage	≤ 10 V
		Current	≤ 1 mA
	Frequency		47 Hz to 63 Hz
	Sensor supp	oly (including ripple)	4052 V
	Peak of curr nominal U)	ent on enabling (at	95 mA
Input impedance	At nominal l	J and f = 55 Hz	9 kΩ
Response time	Activation		10 ms
	Deactivation	1	20 ms
Input type			Capacitive
Input type in compliance with	IEC 61131-2 stand	ard	Type 3
2-wire / 3-wire proximity sensor compatibility (IEC 60947-5-2 standard compliant)			2-wire (AC) (see page 90)
Reliability		ontinuous operation mbient temperature	1 303 645
Dielectric strength		1500 V actual, 50 / 60 Hz for 1 min.	

Resistance of insulation		>10 MΩ (below 500 VDC)
Fuse type	Internal	None
	External	Fast blow fuse of 0.5 A
Sensor voltage: monitoring	ОК	> 36 V
threshold	Error	< 24 V
Sensor voltage: monitoring	On appearance	20 ms < T < 50 ms
response time at 24 V (-15% +20%)	On disappearance	5 ms < T < 15 ms
Power consumption 3.3 V	Typical	76 mA
	Maximum	107 mA
Sensor supply consumption	Typical	466 mA
	Maximum	846 mA
Power dissipation		4 W max.

Connecting the Module


At a Glance

The BMX DAI 1603 module is fitted with a removable 20-pin terminal block for the connection of sixteen input channels.

Input Circuit Diagram

The following diagram shows the circuit of an alternating current input.

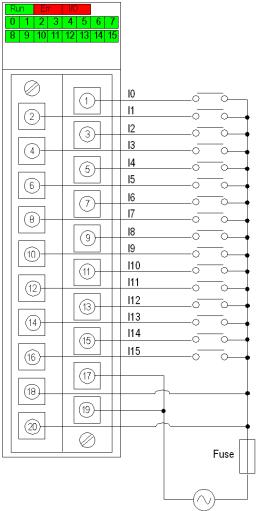
Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.

Failure to follow these instructions will result in death or serious injury.


A CAUTION

LOSS OF INPUT FUNCTION

Install the correct type of fuse with the correct rating.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the sensors.

power supply: 48 VAC **fuse:** fast blow fuse of 0.5A

Chapter 9 BMX DAI 1604 Input Modules

Subject of this Section

This section presents the BMX DAI 1604 module, its characteristics, and explains how it is connected to the various sensors.

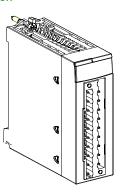
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	154
Characteristics	155
Connecting the Module	157

Introduction

Function


The BMX DAI 1604 module is a 100...120 VAC discrete module connected via a 20-pin terminal block. This module has 16 input channels that operate on alternating current.

Ruggedized Version

The BMX DAI 1604H (hardened) equipment is the ruggedized version of the BMX DAI 1604 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

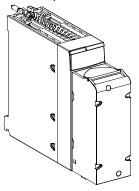
Altitude Operating Conditions

The characteristics in the table below apply to the modules BMX DAO 1604 and BMX DAO 1604H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

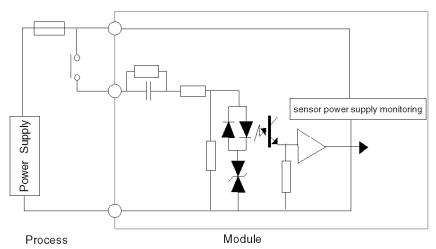
General Characteristics

This table presents the general characteristics for the BMX DAO 1604 and BMX DAO 1604H modules:


Module type			100120 VAC inputs
Operating temperature	BMX DAI 1604	ļ	060 °C (32140 °F)
	BMX DAI 1604	ŀН	-2570 °C (-13158 °F)
Nominal input values		Voltage	100120 VAC
		Current	5 mA
		Frequency	50/60Hz
Threshold input values	At 1	Voltage	≥ 74 V
		Current	≥ 2.5 mA
	At 0	Voltage	≤ 20 V
		Current	≤ 1 mA
	Frequency		47 Hz to 63 Hz
	Sensor supply	(including ripple)	85132 V
	Peak of curren (at nominal U)	t on enabling	240 mA
Input impedance	at nominal U a	nd f = 55 Hz	13 kΩ
Response time	Response time Activation		10 ms
	Deactivation		20 ms
Input type			Capacitive
Input type in compliance with IE	EC 61131-2 standard		Type 3
2-wire / 3-wire proximity sensor compatibility (IEC 60947-5-2 standard compliant)			2-wire (AC) (see page 90)
Reliability	MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)		1 303 067
Dielectric strength		1500 V actual, 50 / 60 Hz for 1 min.	

Resistance of insulation		>10 MΩ (below 500 VDC)
Fuse type	Internal	None
	External	Fast blow fuse of 0.5 A
Sensor voltage: monitoring	ОК	> 82 V
threshold	Error	< 40 V
Sensor voltage: monitoring	on appearance	20 ms < T < 50 ms
response time at 24 V (-15% +20%)	on disappearance	5 ms < T < 15 ms
Power consumption 3.3 V	typical	76 mA
	maximum	107 mA
Sensor supply consumption	typical	228 mA
	maximum	510 mA
Power dissipation		3.8 W max.

Connecting the Module


At a Glance

The BMX DAI 1604 module is fitted with a removable 20-pin terminal block for the connection of sixteen input channels.

Input Circuit Diagram

The following diagram shows the circuit of an alternating current input.

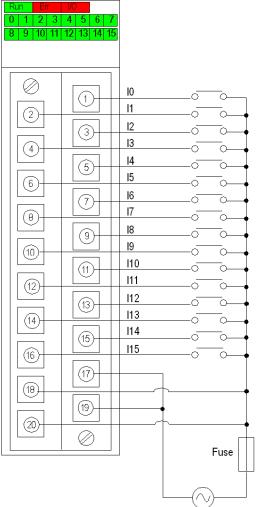
Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.

Failure to follow these instructions will result in death or serious injury.


A CAUTION

LOSS OF INPUT FUNCTION

Install the correct type of fuse with the correct rating.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the sensors.

power supply: 100...120 VAC **fuse:** fast blow fuse of 0.5A

Chapter 10 BMX DAI 1614 Input Modules

Subject of this Section

This section presents the BMX DAI 1614 module, its characteristics, and explains how it is connected to the various sensors.

What Is in This Chapter?

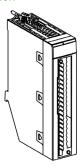
This chapter contains the following topics:

Topic	Page
Introduction	162
Characteristics	163
Connecting the Module	165

Introduction

Function

The BMX DAI 1614 module is a 100...120 VAC discrete module connected via a 40-pin terminal block. This module has 16 input isolated channels that operate on alternating current.


NOTE: Using the BMX DAI 1614 module in an X80 remote drop requires to use an adapter module BM• CRA 312•• module with firmware version SV2.31 or higher.

Ruggedized Version

The BMX DAI 1614H (hardened) equipment is the ruggedized version of the BMX DAI 1614 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

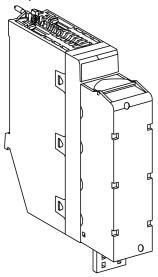
Altitude Operating Conditions

The characteristics in the table below apply to the modules BMX DAI 1614 and BMX DAI 1614H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

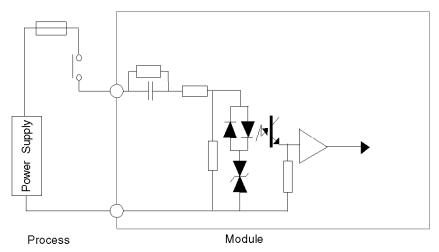
General Characteristics

This table presents the general characteristics for the BMX DAI 1614 and BMX DAI 1614H modules:


Module type			100120 VAC inputs
Operating temperature BMX DAI 1614		060 °C (32140 °F)	
	BMX DAI 1614H		-2570 °C (-13158 °F)
Nominal input values		Voltage	100120 VAC
		Current	215 mA
		Frequency	50/60Hz
Threshold input values	At 1	Voltage	≥ 79 V
		Current	≥ 2 mA
	At 0	Voltage	≤ 20 V
		Current	≤ 1 mA
	Frequency		47 Hz to 63 Hz
Peak of cur (at nominal		ent on enabling J)	190 mA
Max channel input voltage			132 Vrms @ 63 Hz
Input impedance	at nominal U and f = 55 Hz		14 kΩ
Response time	Activation		10 ms
	Deactivation		20 ms
Input type			Capacitive
Input type in compliance with IEC 6113	31-2 standard		Type 1
2-wire / 3-wire proximity sensor compatibility (IEC 60947-5-2 standard compliant)			2-wire (AC) (see page 90)
Reliability	MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)		970 000

Fuse type	Internal	None
	External	Fast blow fuse of 0.25 A
Dielectric strength	Channel to X-bus	1780 V actual, 50 / 60 Hz for 1 min.
	Channel to channel	1780 V actual, 50 / 60 Hz for 1 min.
Resistance of insulation	Channel to X-bus	>10 MΩ (below 500 VDC)
	Channel to channel	>10 MΩ (below 500 VDC)
Sensor voltage: monitoring threshold	OK	> 85 V
	Error	< 40 V
Sensor voltage: monitoring response	on appearance	20 ms < T < 50 ms
time at 24 V (-15% +20%)	on disappearance	5 ms < T < 15 ms
Power consumption 3.3 V	typical	76 mA
	maximum	126 mA
Open wire detection: current threshold	Ok: > 0.3 mA Error: < 0.2 mA	
Open wire shunt resistor recommenda	tion	200 KΩ (1W)
NOTE: The external shunt resistor is only required when the leakage current of the sensor (at OFF state) is less than 0.3 mA. Detailed resistor calculation is provided in the section <i>Open Wire Detection Function (see page 168)</i> .		
Power dissipation		4.3 W max.

Connecting the Module


At a Glance

The BMX DAI 1614 module is fitted with a removable 40-pin terminal block for the connection of 16 input channels.

Input Circuit Diagram

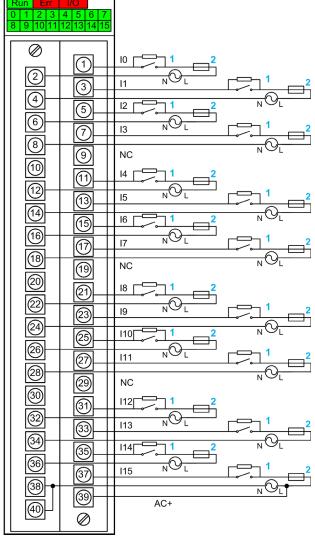
The following diagram shows the circuit of an alternating current input.

Module Connection

A A DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

- Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.
- Switch off the sensor and pre-actuator voltages before touching the shunt resistor for open wire detection.


Failure to follow these instructions will result in death or serious injury.

LOSS OF INPUT FUNCTION

Install the correct type of fuse with the correct rating.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the sensors to the module.

- 1 External resistor for open wire detection function (see detail below)
- 2 fast blow fuse of 0.25A

AC+ Input pin for IO supply monitoring function on channel 15 (see detail below)

NC not connected

Power supply: 100...120 Vac

NOTE: The maximum input voltage is 132 Vrms@63 Hz. Any over voltage will damage the module.

Open Wire Detection Function

The open wire detection function indicates the open wire error by detecting the leakage current of the sensor. The detection threshold values are given in the general characteristics table (see page 163).

If the leakage current of the sensor (at OFF state) is less than the OK threshold value (0.3 mA), then the open wire error might be reported even if the wire is not open. In order to avoid this, an external resistor is required to be added in parallel with the sensor. Refer to the module connection (see page 166).

The recommended value for the external shunt resistor is 200 k Ω (1 W).

Anyhow the maximum and minimum allowed for the external resistor can be calculated according the following method:

$$R_{EXT_MAX} = \frac{U_{MIN}}{I_{DETECT_OK}} - Z_{DAI_MAX}$$

 U_{MIN} is 85% of the nominal voltage according to IEC norm.

 $I_{DETECT\ OK} = 0.3\ \text{mA}$

 $Z_{DAI~MAX}$ = 17 k Ω (for 47 Hz) or 14 k Ω (for 57 Hz)

$$R_{\text{EXT_MIN}} = \frac{U_{\text{MAX}} - I_{\text{THRESHOLD_OFF}} \times Z_{\text{DAI_MIN}}}{I_{\text{THRESHOLD_OFF}} - I_{\text{LEAKAGE MAX}}}$$

 U_{MAX} is 110% of the nominal voltage according to the IEC norm.

I_{THRESHOLD OFF} = 1 mA (this is the maximum threshold current for digital input channel at 0).

 $Z_{DAI\ MIN}$ = 14 k Ω (for 53 Hz) or 12 k Ω (for 63 Hz)

 $I_{LEAKAGE\ MAX}$ is the maximum leakage current of the sensor at OFF state.

NOTE:

Open wire detection limitations:

- If the external resistor value is greater than the maximum calculated resistance R_{EXT_MAX}, the
 open wire error might be reported even if the wire is not open.
- If the external resistor value is less than the minimum calculated resistance R_{EXT_MIN} , the corresponding digital input channel might see sensor state at 1 even if the sensor state is 0.
- If the supply monitoring function (see page 169) is active and there is a loss of IO power supply, the open wire detection fault is not refreshed in Control Expert.

Supply Monitoring Function

The BMXDAI1614 module is a channel-to-channel isolated module, 16 channels get 16 common pins.

The module terminal block has only one supply monitor input (AC+) and its common pin is shared with the channel 15.

To extend the supply monitoring function to other channels, the common of the channel 15 needs to be connected to the common pins of the other channels. In consequence the channel-to-channel isolation will be given up.

By default the supply monitoring function is inactive. Refer to the chapter *Configuration* (see page 387) for detailed information.

The IO supply state is monitored as follows:

- When the IO supply is higher than 85 Vac, the EXT_PS_FLT bit is at 0 which means IO power supply is ok.
- When the IO supply is lower than 40 Vac, the EXT_PS_FLT bit is at 1 which means a detected error on IO power supply. All channel input values are forced to 0.

Chapter 11 BMX DAI 1615 Input Modules

Subject of this Section

This section presents the BMX DAI 1615 module, its characteristics, and explains how it is connected to the various sensors.

What Is in This Chapter?

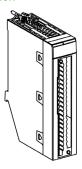
This chapter contains the following topics:

Topic	Page
Introduction	172
Characteristics	173
Connecting the Module	175

Introduction

Function

The BMX DAI 1615 module is a 200...240 VAC discrete module connected via a 40-pin terminal block. This module has 16 isolated input channels that operate on alternating current.


NOTE: Using the BMX DAI 1615 module in an X80 remote drop requires to use an adapter module BM• CRA 312•• module with firmware version SV2.31 or higher.

Ruggedized Version

The BMX DAI 1615H (hardened) equipment is the ruggedized version of the BMX DAI 1615 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

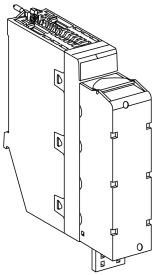
Altitude Operating Conditions

The characteristics in the table below apply to the modules BMX DAI 1615 and BMX DAI 1615H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

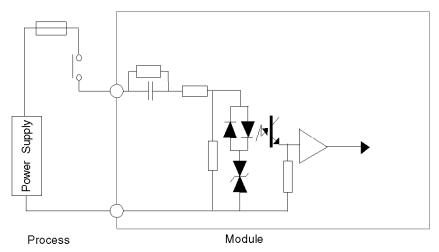
General Characteristics

This table presents the general characteristics for the BMX DAI 1615 and BMX DAI 1615H module:


Module type			200240 VAC inputs
Operating temperature BMX DAI 1615			060 °C (32140 °F)
	BMX DAI 1615H		-2570 °C (-13158 °F)
Nominal input values		Voltage	200240 VAC
		Current	315 mA
		Frequency	50/60Hz
Threshold input values	At 1	Voltage	≥ 164 V
		Current	≥ 3 mA
	At 0	Voltage	≤ 40 V
		Current	≤ 2 mA
	Frequency		47 Hz to 63 Hz
Peak of current on er		n enabling (at nominal U)	380 mA
Input impedance	at nominal U and f = 55 Hz		30 kΩ
Max channel input voltage			264 Vrms @ 63 Hz
Response time	Activation		10 ms
Deactivation		20 ms	
Input type			Capacitive
Input type in compliance v	Input type in compliance with IEC 61131-2 standard		
2-wire / 3-wire proximity sensor compatibility (IEC 60947-5-2 standard compliant)			2-wire (AC) (see page 90)
Reliability	MTBF for continue ambient temperat	ous operation in hours at ure 30 °C (86 °F)	970 000
Fuse type	Fuse type Internal External		None
			Fast blow fuse of 0.25 A

Dielectric strength	Channel to X-bus	1780 V rms, 50 / 60 Hz for 1 min.
	Channel to channel	1780 V rms, 50 / 60 Hz for 1 min.
Resistance of insulation	Channel to X-bus	>10 MΩ (below 500 VDC)
	Channel to channel	>10 MΩ (below 500 VDC)
Sensor voltage:	ОК	> 170 V
monitoring threshold	Error	< 80 V
Sensor voltage:	on appearance	20 ms < T < 50 ms
monitoring response time	on disappearance	5 ms < T < 15 ms
Power consumption 3.3 V	typical	76 mA
	maximum	126 mA
Open wire detection: currer	Ok: > 0.3 mA Error: < 0.2 mA	
Open wire shunt resistor re	commendation	200 KΩ (1W)
NOTE: The external shunt resistor is only required when the leakage current of the sensor (at OFF state) is less than 0.3 mA. Detailed resistor calculation is provided in the section <i>Open Wire Detection Function</i> (see page 178).		
Power dissipation		4.3 W max.

Connecting the Module


At a Glance

The BMX DAI 1615 module is fitted with a removable 40-pin terminal block for the connection of input channels.

Input Circuit Diagram

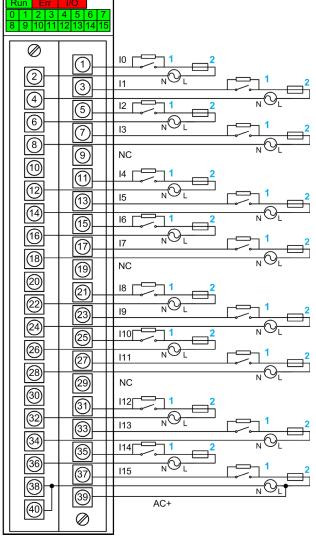
The following diagram shows the circuit of an alternating current input.

Module Connection

A A DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

- Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.
- Switch off the sensor and pre-actuator voltages before touching the shunt resistor for open wire detection.


Failure to follow these instructions will result in death or serious injury.

LOSS OF INPUT FUNCTION

Install the correct type of fuse with the correct rating.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the sensors to the module.

- 1 External resistor for open wire detection function (see detail below)
- 2 fast blow fuse of 0.5A

AC+ Input pin for IO supply monitoring function on channel 15 (see detail below)

NC not connected

Power supply: 220...240 Vac

NOTE: The maximum input voltage is 264 Vrms@63 Hz. Any over voltage will damage the module.

Open Wire Detection Function

The open wire detection function indicates the open wire error by detecting the leakage current of the sensor. The detection threshold values are given in the general characteristics table (see page 173).

If the leakage current of the sensor (at OFF state) is less than the OK threshold value (0.3 mA), then the open wire error might be reported even if the wire is not open. In order to avoid this, an external resistor is required to be added in parallel with the sensor. Refer to the module connection (see page 176).

The recommended value for the external shunt resistor is 200 k Ω (1 W).

Anyhow the maximum and minimum allowed for the external resistor can be calculated according the following method:

$$R_{\text{EXT_MAX}} = \frac{U_{\text{MIN}}}{I_{\text{DETECT_OK}}} - Z_{\text{DAI_MAX}}$$

 U_{MIN} is 85% of the nominal voltage according to IEC norm.

 $I_{DETECT\ OK} = 0.3\ \text{mA}$

 $Z_{DAI~MAX}$ = 39 k Ω (for 47 Hz) or 32 k Ω (for 57 Hz)

$$R_{\text{EXT_MIN}} = \frac{U_{\text{MAX}} - I_{\text{THRESHOLD_OFF}} \times Z_{\text{DAI_MIN}}}{I_{\text{THRESHOLD_OFF}} - I_{\text{LEAKAGE_MAX}}}$$

 U_{MAX} is 110% of the nominal voltage according to the IEC norm.

I_{THRESHOLD OFF} = 2 mA (this is the maximum threshold current for digital input channel at 0).

 $Z_{DAI\ MIN}$ = 28 k Ω (for 53 Hz) or 24 k Ω (for 63 Hz)

 $I_{LEAKAGE\ MAX}$ is the maximum leakage current of the sensor at OFF state.

NOTE:

Open wire detection limitations:

- If the external resistor value is greater than the maximum calculated resistance R_{EXT_MAX}, the
 open wire error might be reported even if the wire is not open.
- If the external resistor value is less than the minimum calculated resistance R_{EXT_MIN} , the corresponding digital input channel might see sensor state at 1 even if the sensor state is 0.
- If the supply monitoring function (see page 179) is active and there is a loss of IO power supply, the open wire detection fault is not refreshed in Control Expert.

Supply Monitoring Function

The BMXDAI1615 module is a channel-to-channel isolated module, 16 channels get 16 common pins.

The module terminal block has only one supply monitor input (AC+) and its common pin is shared with the channel 15.

To extend the supply monitoring function to other channels, the common of the channel 15 needs to be connected to the common pins of the other channels. In consequence the channel-to-channel isolation will be given up.

By default the supply monitoring function is inactive. Refer to the chapter *Configuration* (see page 387) for detailed information.

The IO supply state is monitored as follows:

- When the IO supply is higher than 170 Vac, the EXT_PS_FLT bit is at 0 which means IO power supply is ok.
- When the IO supply is lower than 80 Vac, the EXT_PS_FLT bit is at 1 which means a detected error on IO power supply. All channel input values are forced to 0.

Chapter 12 BMX DAI 0805 Input Modules

Subject of this Section

This section presents the BMX DAI 0805 module, its characteristics, and explains how it is connected to the various sensors.

What Is in This Chapter?

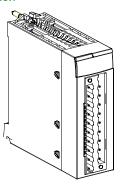
This chapter contains the following topics:

Topic	Page
Introduction	182
Characteristics	183
Connecting the Module	185

35012474 10/2019 181

Introduction

Function


The BMX DAI 0805 module is a 200...240 VAC discrete module connected via a 20-pin terminal block. This module has 8 input channels that operate on alternating current.

Ruggedized Version

The BMX DAI 0805H (hardened) equipment is the ruggedized version of the BMX DAI 0805 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

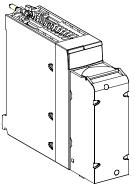
The characteristics in the table below apply to the modules BMX DAI 0805 and BMX DAI 0805H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Characteristics

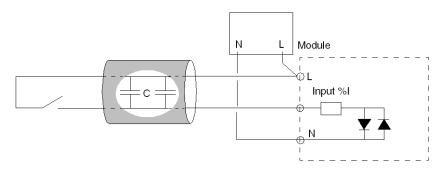
This table presents the general characteristics for the BMX DAI 0805 and BMX DAI 0805H module:

Module type		200240 VAC inputs	
Operating temperature	BMX DAI 08	05	060 °C (32140 °F)
	BMX DAI 08	05H	-2570 °C (-13158 °F)
Absolute maximum input		Continuous	264 VAC
		10s	300 VAC
		1 cycle	400 VAC
Nominal input values		Voltage	200240 VAC
		Current	10.40 mA (for U=220 V at 50 Hz)
		Frequency	50/60Hz
Threshold input values	At 1	Voltage	≥ 159 V
		Current	> 6 mA (for U=159)
	At 0	Voltage	≤ 40 V
		Current	≤ 4 mA
	Frequency		47 Hz to 63 Hz
	Sensor supp	oly (including ripple)	170264 V
	Peak of curre (at nominal to	ent on enabling U)	480 mA
Input impedance	at nominal U	I and f = 55 Hz	21 kΩ
Response time	Activation		10 ms
	Deactivation		20 ms
Input type			Capacitive
Input type in compliance with IEC 61131-2 standard			Type 2
2-wire / 3-wire proximity sensor compatibility (IEC 60947-5-2 standard compliant)		2-wire (AC) (see page 90)	


35012474 10/2019 183

Reliability	MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)	1 730 522
Fuse type	Internal	None
	External	Fast blow fuse of 0.5 A
Dielectric strength		1500 V rms, 50 / 60 Hz for 1 min.
Resistance of insulation		>10 MΩ (below 500 VDC)
Sensor voltage: monitoring	ОК	> 164 V
threshold	Error	< 80 V
Sensor voltage: monitoring	on appearance	20 ms < T < 50 ms
response time	on disappearance	5 ms < T < 15 ms
Power consumption 3.3 V	typical	76 mA
	maximum	126 mA
Sensor supply consumption	typical	93.60 mA
	maximum	154.80 mA
Power dissipation	2	4.73 W max.

Connecting the Module


At a Glance

The BMX DAI 0805 module is fitted with a removable 20-pin terminal block for the connection of eight input channels.

Input Circuit Diagram

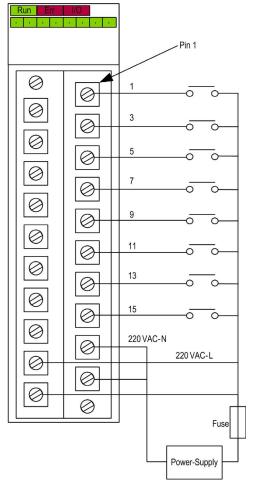
The following diagram shows the circuit of an alternating current input.

Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.


Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF INPUT FUNCTION

Install the correct type of fuse with the correct rating.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the sensors.

power supply: 200...240 VAC fuse: fast blow fuse of 0.5A

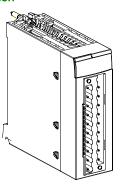
Chapter 13 BMX DAI 0814 Input Module

Subject of this Section

This section presents the BMX DAI 0814 module, its characteristics, and explains how it is connected to the various sensors.

What Is in This Chapter?

This chapter contains the following topics:


Topic	Page
Introduction	190
Characteristics	191
Connecting the Module	193

Introduction

Function

The BMX DAI 0814 module is a 100...120 Vac discrete module connected via a 20-pin terminal block. The module has 8 isolated input channels that operate on alternating current.

Illustration

Characteristics

Altitude Operating Conditions

The characteristics in the table below apply to the module BMX DAI 0814 for use at altitude up to 2000 m (6560 ft). When the module operates above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Characteristics

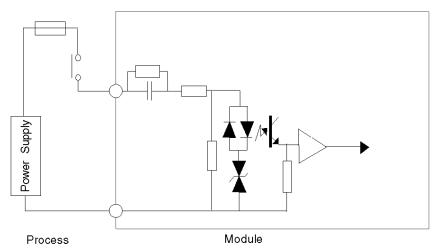
This table presents the general characteristics for the BMX DAI 0814 module:

Module type			100120 Vac inputs
Operating temperature			060 °C (32140 °F)
Nominal input values		Voltage	100120 Vac
		Current	5 mA
		Frequency	50/60Hz
Threshold input values	At 1	Voltage	≥ 74 V
		Current	≥ 2.5 mA
	At 0	Voltage	≤ 20 V
		Current	≤ 1 mA
	Frequency		47 Hz to 63 Hz
	Sensor supply (in	cluding ripple)	85132 V
	Peak of current on enabling (at nominal U)		240 mA
Input impedance	at nominal U and f = 55 Hz		13 kΩ
Response time	Activation		10 ms
	Deactivation		20 ms
Input type			Capacitive
Input type in compliance wit	h IEC 61131-2 stan	dard	Type 3
2-wire / 3-wire proximity ser standard compliant)	nsor compatibility (IE	C 60947-5-2	2-wire (AC) (see page 90)
Reliability	MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)		1700000
Fuse type	Internal		None
	External		Fast blow fuse of 0.25 A
Power consumption 3.3 V	typical		61 mA
	maximum		112 mA

35012474 10/2019 191

Dielectric strength	Channel to Bus	1780 V actual, 50 / 60 Hz for 1 min.	
	Channel to Channel	1780 V actual, 50 / 60 Hz for 1 min.	
Resistance of insulation	Channel to Bus	>10 MΩ (below 500 VDC)	
	Channel to Channel	>10 MΩ (below 500 VDC)	
Power dissipation		2.35 W max.	

Connecting the Module


At a Glance

The BMX DAI 0814 module is fitted with a removable 20-pin terminal block for the connection of eight input channels.

Input Circuit Diagram

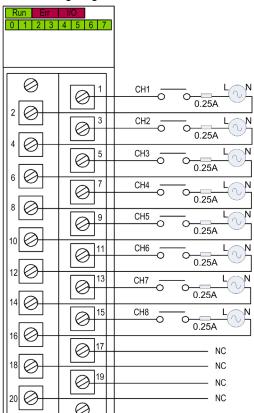
The following diagram shows the circuit of an alternating current input.

Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.


Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF INPUT FUNCTION

Install the correct type of fuse with the correct rating.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the sensors to the module.

power supply: 100...120 VAC **fuse:** fast blow fuse of 0.25A

NC not connected

Chapter 14 BMX DDI 3202 K Input Modules

Subject of this Section

This section presents the BMX DDI 3202 K module, its characteristics and explains how it is connected to the various sensors.

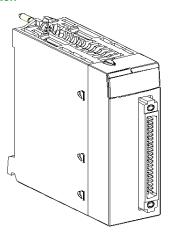
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	198
Characteristics	199
Connecting the Module	201

Introduction

Function


The BMX DDI 3202 K module is a 24 VDC discrete module connected via a 40-pin connector. It is a positive logic (or sink) module: its 32 input channels receive current from the sensors.

Ruggedized Version

The BMX DDI 3202KH (hardened) equipment is the ruggedized version of the BMX DDI 3202K (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

The characteristics in the table below apply to the modules BMX DDI 3202K and BMX DDI 3202KH for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Characteristics

This table presents the general characteristics for the BMX DDI 3202 K and BMX DDI 3202 KH modules.

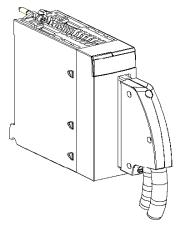
Module type			24 VDC positive logic inputs	
Operating temperature	BMX DDI 3202 K BMX DDI 3202 KH		060 °C (32140 °F)	
			-2570 °C (-13158 °F)	
Nominal input values		Voltage	24 VDC	
		Current	2.5 mA	
Threshold input values	At 1	Voltage	≥ 11 V	
		Current	> 2 mA (for U ≥ 11 V)	
	At 0	Voltage	5 V	
		Current	< 1.5 mA	
	Sensor s	supply g ripple)	1930 V (possible up to 34 V, limited to 1 hour/day)	
Input impedance	at nomir	nal U	9.6 kΩ	
Response time	typical		4 ms	
	maximum		7 ms	
Input type			Current sink	
Input type in compliance with IEC 61131-2 standard		131-2	Type 3	
Reverse polarity			Protected	
Fuse type	Internal		None	
	External		1 fast blow fuse of 0.5 A for each 16-channel group	
2-wire / 3-wire proximity sensor compatibility (IEC 60947-5-2 standard compliant)		patibility	2-wire (DC), and 3-wire (DC) PNP any type (see page 90)	
Dielectric strength	Primary/	Secondary	1500 V actual, 50 / 60 Hz for 1 min.	
	Between channel groups		500 VDC	

Resistance of insulation		>10 MΩ (below 500 VDC)	
Paralleling of inputs		No	
Reliability	MTBF in hours at ambient temperature 30 °C (86 °F)	696 320	
Sensor voltage:	OK	> 18 VDC	
monitoring threshold	Error	< 14 VDC	
Sensor voltage:	on appearance	1 ms < T < 3 ms	
monitoring response time at 24 V (-15% +20%)	on disappearance	8 ms < T < 30 ms	
Power consumption 3.3 V	typical	121 mA	
	maximum	160 mA	
Sensor supply	typical	92 mA	
consumption	maximum	145 mA	
Power dissipation	·	3.9 W max.	

NOTE: For the **BMX DDI 3202 KH**, the maximum value of the sensor power supply must not exceed 26.4 V and the minimum value must not be less than 21.1 V when operated within 60...70 °C (140...158 °F).

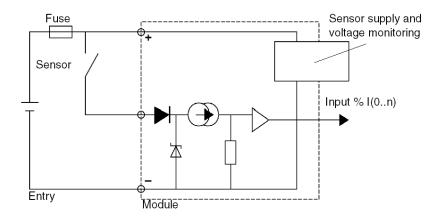
A WARNING

OVERHEATING MODULE


Do not operate the **BMX DDI 3202 KH** within 60...70 °C (140...158 °F) if the sensor power supply is greater than 26.4 V or less than 21.1 V.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Connecting the Module


At a Glance

The BMX DDI 3202 K module is fitted with a 40-pin connector for the connection of thirty-two input channels.

Input Circuit Diagram

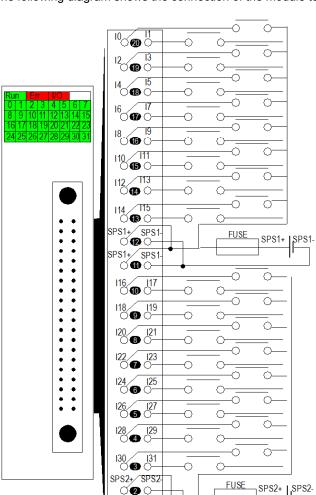
The following diagram shows the circuit of a direct current input (positive logic).

Module Connection

A A DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.


Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF INPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the sensors.

power supply: 24 VDC

fuse: fast blow fuse of 0.5 A for each 16-channel group

SPS2+/SPS2-

SPS: sensor power supply

35012474 10/2019 203

Sensor Power Outage

After a power sensor outage, if the **Supply monitoring** check box is not selected in the module configuration screen then the digital input can stay active.

A WARNING

DIGITAL INPUT STATE INACTIVE AFTER A SENSOR POWER OUTAGE

Do not click to clear the **Supply monitoring** check box in the module configuration screen to guarantee the digital input state inactive after sensor power outage.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

To access the **Supply monitoring** check box, refer to chapter *How to Modify the External Power Supply Error Monitoring Parameter (see page 400).*

After the sensor power outage, the I/O (red) LED of the module switches on and the last recorded position of the sensor is displayed by the input channel status LED's.

A WARNING

CHANNEL LED INFORMATION NOT MATCHING SENSORS POSITION

After a sensor power outage:

- The I/O error LED is on
- Do not take into account the input LEDs information (they show the last recorded position of the sensors, not their real positions)
- Check the real positions on the sensors.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Chapter 15 BMX DDI 6402 K Input Modules

Subject of this Section

This section presents the BMX DDI 6402 K module, its characteristics, and explains how it is connected to the various sensors.

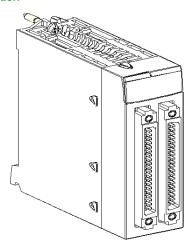
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	206
Characteristics	207
Connecting the Module	209

Introduction

Function


The BMX DDI 6402 K module is a 24 VDC discrete module connected via two 40-pin connectors. It is a positive logic (or sink) module: its 64 input channels receive current from the sensors.

Ruggedized Version

The BMX DDI 6402KH (hardened) equipment is the ruggedized version of the BMX DDI 6402 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

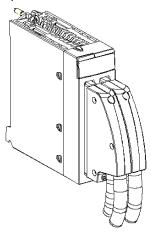
The characteristics in the table below apply to the modules BMX DDI 6402K and BMX DDI 6402KH for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Characteristics

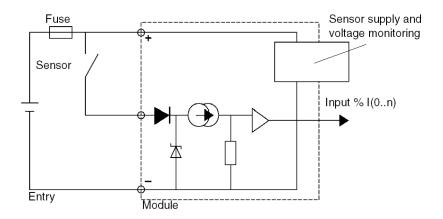
This table presents the general characteristics for the BMX DDI 6402 K and BMX DDI 6402 KH modules.

Module type			24 VDC positive logic inputs
Operating temperature	BMX DDI 6402K		060 °C (32140 °F)
	BMX DDI 6	6402KH	-2570 °C (-13158 °F)
Nominal input values		Voltage	24 VDC
		Current	1 mA
Threshold input values	At 1	Voltage	≥ 15 V
	At 0	Voltage	4 V
	Sensor sup	, ,	1930 V (possible up to 34 V, limited to 1 hour/day)
Input impedance	at nominal	U	24 kΩ
Response time	typical		4 ms
	maximum		7 ms
Reverse polarity			Protected
Fuse type	Internal		None
	External		1 fast blow fuse of 0.5 A for each 16-channel group
Type of input			Current sink
Input type in compliance with IEC 61131-2 s	tandard		No type
2-wire / 3-wire proximity sensor compatibility (IEC 60947-5-2 standard compliant)		No compatibility (only 1 contact per sensor allowed)	
Dielectric strength	Primary/Secondary		1500 V actual, 50 / 60 Hz for 1 min
	Between cl groups	hannel	500 VDC
Resistance of insulation			>10 MΩ (below 500 VDC)
Paralleling of inputs		No	


35012474 10/2019 207

Reliability	MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)	342 216
Sensor voltage: monitoring threshold	OK	> 18 V
	Error	< 14 V
Sensor voltage: monitoring response time at	on appearance	1 ms < T < 3 ms
24 V (-15% +20%)	on disappearance	8 ms < T < 30 ms
Power consumption 3.3 V	typical	160 mA
	maximum	226 mA
Sensor supply consumption	typical	96 mA
	maximum	125 mA
Power dissipation		4.3 W max.

Connecting the Module


At a Glance

The BMX DDI 6402 K module is fitted with two 40-pin connectors for the connection of sixty-four input channels.

Input Circuit Diagram

The following diagram shows the circuit of a direct current input (positive logic).

35012474 10/2019 209

Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.

Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF INPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

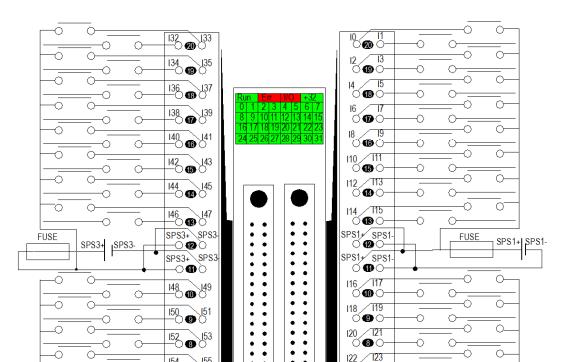
0-

0

0

0

SPS2+1, SPS2-


-0

0

FUSE

 \bigcirc

0-

٠

٠

٠

000

124 / 125

600

600

128 / T29 **(40**)

130 / 131 **60**0-

SPS2+ SPS2-

SPS2+/SPS2-

Ó**1**0

O20-

/ 127 126

 \circ

0

0

 \circ

The following diagram shows the connection of the module to the sensors.

power supply: 24 VDC

fuse: fast blow fuse of 0.5 A for each 16-channel group

SPS4+ SPS4

SPS4+\SPS4

OOO

SPS: sensor power supply

0

0

0

0

0

0

SPS4+

0

0

-0

0

FUSE

0

0

0

0

SPS4-

Sensor Power Outage

After a power sensor outage, if the **Supply monitoring** check box is not selected in the module configuration screen then the digital input can stay active.

A WARNING

DIGITAL INPUT STATE INACTIVE AFTER A SENSOR POWER OUTAGE

Do not click to clear the **Supply monitoring** check box in the module configuration screen to guarantee the digital input state inactive after sensor power outage.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

To access the **Supply monitoring** check box, refer to chapter *How to Modify the External Power Supply Error Monitoring Parameter (see page 400).*

After the sensor power outage, the I/O (red) LED of the module switches on and the last recorded position of the sensor is displayed by the input channel status LED's.

A WARNING

CHANNEL LED INFORMATION NOT MATCHING SENSORS POSITION

After a sensor power outage:

- The I/O error LED is on
- Do not take into account the input LEDs information (they show the last recorded position of the sensors, not their real positions)
- Check the real positions on the sensors.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Chapter 16 BMX DDO 1602 Static Output Modules

Subject of this Section

This section presents the BMX DDO 1602 module, its characteristics, and explains how it is connected to the pre-actuators.

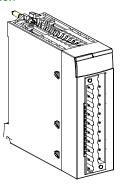
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	214
Characteristics	215
Connecting the Module	217

Introduction

Function


The BMX DDO 1602 module is a 24 VDC discrete module connected via a 20-pin terminal block. It is a positive logic (or source) module: its 16 output channels provide current to the pre-actuators.

Ruggedized Version

The BMX DDO 1602H (hardened) equipment is the ruggedized version of the BMX DDO 1602 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

The characteristics in the table below apply to the modules BMX DDO 1602 and BMX DDO 1602H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Characteristics

This table presents the general characteristics for the BMX DDO 1602 and BMX DDO 1602H modules:

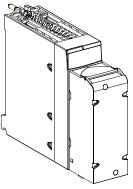
Module type		24 VDC positive logic static outputs	
Operating temperature	BMX DDO 1602	060 °C (32140 °F)	
	BMX DDO 1602H	-2570 °C (-13158 °F)	
Temperature derating		Apply the temperature derating curve (see page 35)	
Nominal values	Voltage	24 VDC	
	Current	0.5 A	
Threshold values	Voltage (including ripple)	1930 V (34 V possible for 1 hour/day)	
	Current/channel	0.625 A	
	Current/module	10 A	
Power of tungsten filament lamp	Maximum	6 W	
Leakage current	At 0	< 0.5 mA	
Voltage drop	At 1	< 1.2 V	
Load impedance	minimum	48 Ω	
Response time ⁽¹⁾		1.2 ms	
Reliability	MTBF for continuous operation in hours at ambient temperature 30 °C (86°F)	392 285	
Frequency of switching to inductive load		0.5 / LI ² Hz	
Paralleling of outputs		Yes (maximum of 2)	
Compatibility with IEC 61131-2 DC direct inputs		Yes (type 3 and no type)	
(A) All outputs are assigned with fact demogratization size its far algebrane and a Floritonic and discharge			

- (1) All outputs are equipped with fast demagnetization circuits for electromagnets. Electromagnet discharge time < L/R.
- (2) Provide a fuse to the +24 V pre-actuator supply.

35012474 10/2019 215

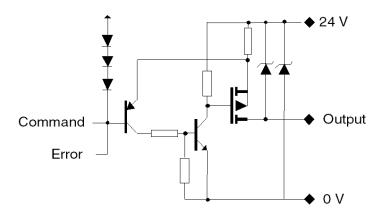
		T
Built-in protection	against over voltage	Yes, by Transil diode
	against inversions	Yes, by inverted diode ⁽²⁾
	against short-circuits and overloads	Yes, by current limiter and electric circuit-breaker 1.5 In < Id < 2 In
Fuse type	Internal	None
	External	1 fast blow fuse of 6.3 A
Pre-actuator voltage: monitoring threshold	OK	> 18 V
	Error	< 14 V
Pre-actuator voltage: monitoring response time	on appearance	8 ms < T < 30 ms
	on disappearance	1 ms < T < 3 ms
Power consumption 3.3 V	typical	79 mA
	maximum	111 mA
24 V pre-actuator consumption (excluding load current)	typical	23 mA
	maximum	32 mA
Power dissipation		4 W max.
Dielectric strength	Output / ground or output / internal logic	1500 V actual, 50 / 60 Hz for 1 min.
Resistance of insulation		>10 MΩ (below 500 VDC)

⁽¹⁾ All outputs are equipped with fast demagnetization circuits for electromagnets. Electromagnet discharge time < L/R.


NOTE: For the **BMX DDO 1602H**, the maximum pre-actuator power supply must not exceed 26.4 V and the output current value must not exceed 0.55 A at 70 °C (158 °F).

⁽²⁾ Provide a fuse to the +24 V pre-actuator supply.

Connecting the Module


At a Glance

The BMX DDO 1602 module is fitted with a removable 20-pin terminal block for the connection of sixteen output channels.

Output Circuit Diagram

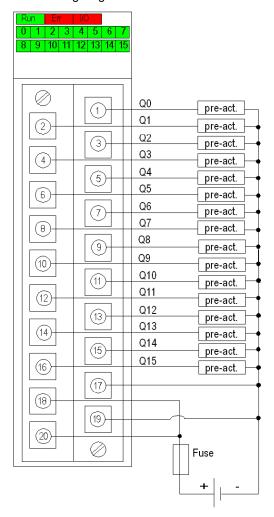
The following diagram shows the circuit of a direct current output (positive logic).

Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltage before connecting or disconnecting the module.


Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF OUTPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the pre-actuators.

power supply: 24 VDC **fuse:** fast blow fuse of 6.3 A **pre-act:** pre-actuator

Chapter 17 BMX DDO 1612 Static Output Modules

Subject of this Section

This section presents the BMX DDO 1612 module, its characteristics, and explains how it is connected to the pre-actuators.

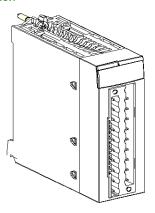
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	222
Characteristics	223
Connecting the Module	225

Introduction

Function


The BMX DDO 1612 module is a 24 VDC discrete module connected via a 20-pin terminal block. It is a negative logic (or sink) module: its 16 output channels receive current from the pre-actuators.

Ruggedized Version

The BMX DDO 1612H (hardened) equipment is the ruggedized version of the BMX DDO 1612 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

The characteristics in the table below apply to the modules BMX DDO 1612 and BMX DDO 1612H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Characteristics

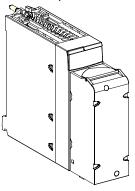
This table presents the general characteristics for the BMX DDO 1612 and BMX DDO 1612H modules:

Module type		24 VDC negative logic static outputs	
Operating temperature	BMX DDO 1612	060 °C (32140 °F)	
	BMX DDO 1612H	-2570 °C (-13158 °F)	
Temperature derating	Apply the temperature derating curve (see page 35)		
Nominal values	Voltage	24 VDC	
	Current	0.5 A	
Threshold values	Voltage (including ripple)	1930 V (34 V possible for 1 hour/day)	
	Current/channel	0.625 A	
	Current/module	10 A	
Power of tungsten filament lamp Maximum		6 W	
Leakage current At 0		< 0.5 mA	
Residual voltage At 1		< 1.2 V	
Load impedance minimum		48 Ω	
Response time ⁽¹⁾		1.2 ms	
Reliability MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)		403 804	
Frequency of switching to inductive load		0.5 / LI ² Hz	
Paralleling of outputs		Yes (maximum of 3)	
Compatibility with DC inputs		Yes (source and no type inputs)	
(4) All () 1 20 6			

- (1) All outputs are equipped with fast demagnetization circuits for electromagnets. Electromagnet discharge time < L/R.
- (2) Provide a fuse to the +24 V pre-actuator supply.

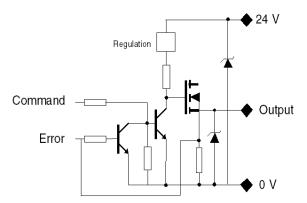
Built-in protection ⁽²⁾	against over voltage	Yes, by Transil diode	
	against reverse polarity	Yes, by reverse-mounted diode	
	against short-circuits and overloads	Yes, by current limiter and electric circuit-breaker 1.5 ln < ld < 2 ln	
Fuse type	Internal	None	
	External	1 fast blow fuse of 6.3 A	
Pre-actuator voltage:	OK	> 18 V	
monitoring threshold	Error	< 14 V	
Pre-actuator voltage: monitoring response time	on appearance	8 ms < T < 30 ms	
	on disappearance	1 ms < T < 3 ms	
Power consumption 3.3 V	typical	79 mA	
	maximum	111 mA	
24 V pre-actuator consumption	typical	23 mA	
(Excluding load current)	maximum	32 mA	
Power dissipation	2.26 W max.		
Dielectric strength	Output / ground or output / internal logic	1500 V rms, 50 / 60 Hz for 1 min.	
Resistance of insulation		>10 MΩ (below 500 VDC)	

⁽¹⁾ All outputs are equipped with fast demagnetization circuits for electromagnets. Electromagnet discharge time < L/R.


NOTE: For the **BMX DDO 1612H**, the maximum pre-actuator power supply must not exceed 26.4 V and the output current value must not exceed 0.55 A at 70 °C (158 °F).

⁽²⁾ Provide a fuse to the +24 V pre-actuator supply.

Connecting the Module


At a Glance

The BMX DDO 1612 module is fitted with a removable 20-pin terminal block for the connection of sixteen output channels.

Output Circuit Diagram

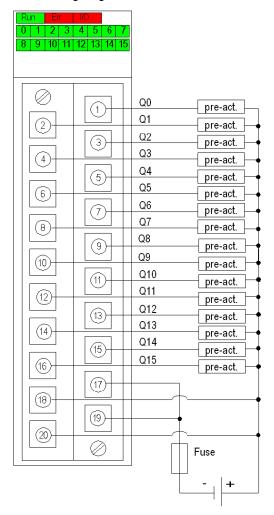
The following diagram shows the circuit of a direct current output (negative logic).

Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltage before connecting or disconnecting the module.


Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF OUTPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the pre-actuators.

power supply: 24 VDC **fuse:** fast blow fuse of 6.3 A **pre-act:** pre-actuator

Chapter 18 BMX DRA 0804T Relay Output Modules

Subject of this Section

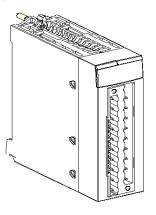
This section presents the BMX DRA 0804T module, its characteristics, and explains how it is connected to the pre-actuators.

NOTE: There is no H version of this module.

What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	230
Characteristics	231
Connecting the Module	233


Introduction

Function

The BMX DRA 0804T module is a 125 VDC discrete relay module connected via a 20-pin terminal block. Its 8 relay output channels operate on direct current.

NOTE: BMX DRA 0804T provides an extended temperature range, as listed in the General Characteristics *(see page 231)* topic of this chapter.

Illustration

Characteristics

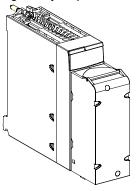
Altitude Operating Conditions

The characteristics in the table below apply to the module BMX DRA 0804T for use at altitude up to 2000 m (6560 ft). When the module operates above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

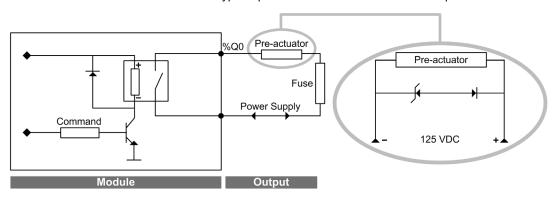
General Characteristics

This table presents the general characteristics for the BMX DRA 0804T module:


Module type			Relay outputs for direct current		
Operating temperature			-2570 °C (-13158 °F)		
Rated voltage	Direct		125 VDC		
Voltage range	Direct		100150 VDC		
Maximum switching of	current		0.3 A		
Response time	Activation		< 10 ms		
	Deactivation		< 10 ms		
Surge current maximum	10 A capaciti	ve	t = 10 ms		
Built-in protection	Against induction voltage in DC		None. Fit a discharge diode on each output.		
	against short-circuits and overloads		None. Fit a fast-blow fuse of 0.5 A, 250 VDC for each relay.		
Reliability	Reliability MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)		2 683 411		
Power dissipation			3.17 W maximum		
Field to Bus (Dielectr (at 50/60 Hz for 1 mir			2000 V actual		
Resistance of insulation (at 500 VDC)			>10 ΜΩ		
Power supply 3.3 V Typical		Typical	40 mA		
consumption		Maximum	75 mA		
	24 V (All channels stay at 1)	Typical	101 mA		
		Maximum	137 mA		
Point to point isolation	n		1780 VAC rms		

Output current	0.3 A at 125 VDC (resistive load) 100,000 ops. minimum
	0.1 A (L/R = 10 ms) 100,000 ops. minimum
Mechanical operations	20,000,000 minimum

Connecting the Module


At a Glance

The BMX DRA 0804T module is fitted with a removable 20-pin terminal block for the connection of eight relay output channels.

Output Circuit Diagram

The following diagram shows the circuit of a relay output. Note the enlargement of the pre-actuator. It is recommended to install this type of protection on the terminals of each pre-actuator.

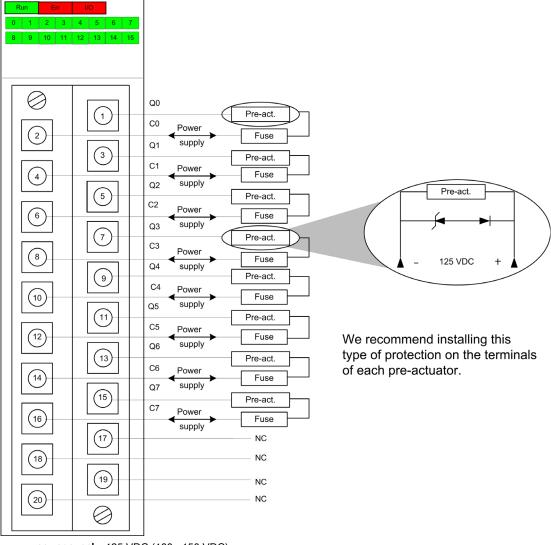
Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.

Failure to follow these instructions will result in death or serious injury.


A CAUTION

LOSS OF OUTPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the pre-actuators.

power supply: 125 VDC (100...150 VDC)

fuse: 1 fast blow fuse of 0.5 A, 250 VDC for each relay

NC: not connected

NOTE: A Zener Diode voltage of 47V or slightly higher is recommended.

Chapter 19 BMX DRA 0805 Relay Output Modules

Subject of this Section

This section presents the BMX DRA 0805 module, its characteristics, and explains how it is connected to the pre-actuators.

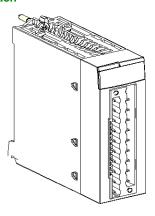
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	238
Characteristics	239
Connecting the Module	242

Introduction

Function


The BMX DRA 0805 module is a 24 VDC or 24...240 VAC discrete module connected via a 20-pin terminal block. Its 8 relay output channels operate either on alternating current or direct current.

Ruggedized Version

The BMX DRA 0805H (hardened) equipment is the ruggedized version of the BMX DRA 0805 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

The characteristics in the table below apply to the modules BMX DRA 0805 and BMX DRA 0805H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Characteristics

This table presents the general characteristics for the BMX DRA 0805 and BMX DRA 0805H modules:

Module type		Relay outputs for alternating and direct current			
Operating temperature BMX DRA 0805		060 °C (32140 °F)			
	BMX DRA 0805H	-2570 °C (-	13158 °F)		
Rated voltage	Direct	24 VDC			
	Alternating	24240 VAC)		
Voltage range Direct		1034 VDC			
Alternating		19264 VAC (4763 Hz)			
Thermal current		3 A			
Minimum switching load		5 VDC / 10 mA			
Alternating current load in	Voltage	24 VAC	48 VAC	100120 VAC	200240 VAC
resistive mode (AC12)	Power	50 VA ⁽⁵⁾	50 VA ⁽⁶⁾ 110 VA ⁽⁴⁾	110 VA ⁽⁶⁾ 220 VA ⁽⁴⁾	220 VA ⁽⁶⁾
	Maximum Power of Hardened module at 70°C (158°F)	30 VA ⁽⁵⁾	30 VA ⁽⁶⁾ 66 VA ⁽⁴⁾	66 VA ⁽⁶⁾ 132 VA ⁽⁴⁾	132 VA ⁽⁶⁾

(1):0.1 x 10^6 cycles, (2): 0.15 x 10^6 cycles, (3): 0.3 x 10^6 cycles, (4): 0.5 x 10^6 cycles, (5): 0.7 x 10^6 cycles,

(6): 1×10^6 cycles, (7): 1.5×10^6 cycles, (8): 2×10^6 cycles, (9): 3×10^6 cycles, (10): 5×10^6 cycles,

(11): 10 x 10⁶ cycles, (12): per channel at 1.

Alternating current load in	Voltage	24 VAC	48 VAC	100120 VAC	200240 VAC	
inductive mode (AC15)	Power	24 VA ⁽⁴⁾	10 VA ⁽¹⁰⁾ 24 VA ⁽⁸⁾	10 VA ⁽¹¹⁾ 50 VA ⁽⁷⁾ 110 VA ⁽²⁾	10 VA ⁽¹¹⁾ 50 VA ⁽⁹⁾ 110 VA ⁽⁶⁾ 220 VA ⁽¹⁾	
	Maximum Power of Hardened module at 70°C (158°F)	14.4 VA ⁽⁴⁾	6 VA ⁽¹⁰⁾ 14.4 VA ⁽⁸⁾	6 VA ⁽¹¹⁾ 30 VA ⁽⁷⁾ 66 VA ⁽²⁾	6 VA ⁽¹¹⁾ 30 VA ⁽⁹⁾ 66 VA ⁽⁶⁾ 132 VA ⁽¹⁾	
Direct current load in	Voltage	24 VDC				
resistive mode (DC12)	Power	24 W ⁽⁶⁾ 40 W ⁽³⁾				
	Maximum Power of Hardened module at 70°C (158°F)	14.4 W ⁽⁶⁾ 24 W ⁽³⁾				
Direct current load in inductive mode (DC13) (L:R=60 ms)	Voltage	24 VDC				
	Power	10 W ⁽⁸⁾ 24 W ⁽⁶⁾				
	Maximum Power of Hardened module at 70°C (158°F)	6 W ⁽⁸⁾ 14.4 W ⁽⁶⁾				
Response time	Activation	< 10 ms				
	Deactivation	< 8 ms				
Built-in protection	Against inductive over voltage in AC modes	None. Fit an RC circuit or a ZNO type over voltage limiter in parallel on each output appropriate to the voltage in use.				
	Against inductive over voltage in DC modes	None. Fit a discharge diode on each output.				
	against short-circuits and overloads	None. Fit a fast-blow fuse of 3 A for each relay.				
Reliability	MTBF for continuous operation in hours at ambient temperature 30°C (86°F)	2 119 902				
Power dissipation		2.7 W max.				
Dielectric strength (at 50/60 Hz for 1 min.)	-			2000 V actual		

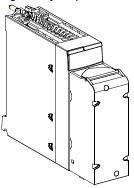
⁽¹⁾:0.1 x 10^6 cycles, **(2)**: 0.15 x 10^6 cycles, **(3)**: 0.3 x 10^6 cycles, **(4)**: 0.5 x 10^6 cycles, **(5)**: 0.7 x 10^6 cycles,

^{(6):} 1×10^6 cycles, (7): 1.5×10^6 cycles, (8): 2×10^6 cycles, (9): 3×10^6 cycles, (10): 5×10^6 cycles,

^{(11): 10} x 10⁶ cycles, (12): per channel at 1.

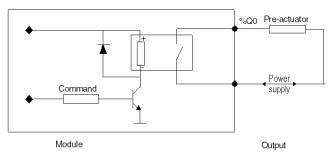
Resistance of insulation (at 500 VDC)			>10 ΜΩ
Power supply	3.3 V	Typical	79 mA
consumption		Maximum	111 mA
	24 V	Typical	51 mA
	relay ⁽¹²⁾	Maximum	56 mA

(1):0.1 x 10^6 cycles, **(2)**: 0.15 x 10^6 cycles, **(3)**: 0.3 x 10^6 cycles, **(4)**: 0.5 x 10^6 cycles, **(5)**: 0.7 x 10^6 cycles,


(6): 1 x 10⁶ cycles, **(7)**: 1.5 x 10⁶ cycles, **(8)**: 2 x 10⁶ cycles, **(9)**: 3 x 10⁶ cycles, **(10)**: 5 x 10⁶ cycles,

(11): 10 x 10⁶ cycles, (12): per channel at 1.

Connecting the Module


At a Glance

The BMX DRA 0805 module is fitted with a removable 20-pin terminal block for the connection of eight relay output channels.

Output Circuit Diagram

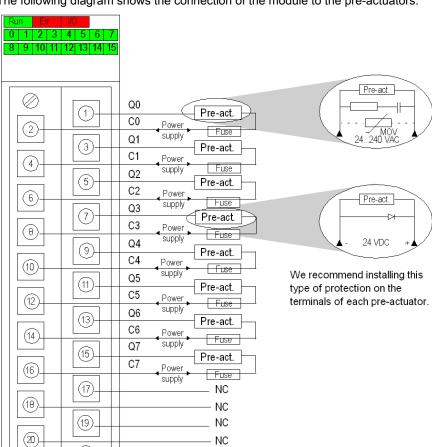
The following diagram shows the circuit of a relay output.

Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.


Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF OUTPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the pre-actuators.

power supply: 24 VDC or 24...240 VAC **fuse**: 1 fast blow fuse of 3 A for each relay

NC: not connected

Chapter 20 BMX DRA 0815 Relay Output Modules

Subject of this Section

This section presents the BMX DRA 0815 module, its characteristics, and explains how it is connected to the pre-actuators.

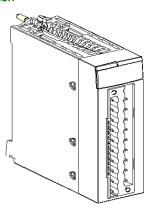
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	246
Characteristics	247
Connecting the Module	250

Introduction

Function


The BMX DRA 0815 module is a 5...125 VDC or 24...240 VAC discrete module connected via a 20-pin terminal block. Its 8 relay output channels operate either on alternating current or direct current.

Ruggedized Version

The BMX DRA 0815H (hardened) equipment is the ruggedized version of the BMX DRA 0815 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

The characteristics in the table below apply to the modules BMX DRA 0815 and BMX DRA 0815H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Characteristics

This table presents the general characteristics for the BMX DRA 0815 and BMX DRA 0815H modules:

Module type	Relay outputs for alternating and direct current
Rated range	Alternating 24240 Vac
	Direct 24125 Vdc
Voltage range	Alternating 19264 Vac (4763 Hz)
	Direct 5150 Vdc
Operating temperature	BMX DRA 0815 0 °C to 60 °C (32 °F to 140 °F) with derating (see hereafter).
	BMX DRA 0815H -25 °C to 70 °C (-13 °F to 158 °F) with derating (see hereafter).
Thermal current	Apply the following derating curve to the thermal current (in A) versus ambient temperature (in °C): I (A) 4 3 2 1.2 A 0 -25 -10 0 10 20 30 40 50 60 70 T(°C)

(1): 0.04×10^6 cycles, (2): 0.05×10^6 cycles, (3): 0.06×10^6 cycles, (4): 0.07×10^6 cycles,

(5): 0.1×10^6 cycles, **(6)**: 0.15×10^6 cycles, **(7)**: 0.2×10^6 cycles, **(8)**: 0.3×10^6 cycles,

(9): 0.5×10^6 cycles, **(10)**: 0.7×10^6 cycles, **(11)**: 1×10^6 cycles,

(12): All channels at 1, (13): Below 50 °C (122 °F)

Minimum switching load		5 Vdc / 10 mA			
Alternating current load in resistive mode (AC12)	Voltage	24 Vac	48 Vac	100120 Vac	200250 Vac
	Switching power below 60 °C (140 °F)	48 VA ⁽⁷⁾	48 VA ⁽⁸⁾ 96 VA ⁽⁶⁾	110 VA ⁽⁸⁾ 220 VA ⁽⁶⁾	220 VA ⁽⁸⁾ 500 VA ⁽⁶⁾
	Maximum switching power of hardened module at 6070 °C (140158 °F)	28.8 VA ⁽⁷⁾	28.8 VA ⁽⁸⁾ 57.6 VA ⁽⁶⁾	66 VA ⁽⁸⁾ 132 VA ⁽⁶⁾	132 VA ⁽⁸⁾ 300 VA ⁽⁶⁾
Alternating current load in	Voltage	24 Vac	48 Vac	100120 Vac	200250 Vac
inductive mode (AC15) (Power factor = 0.4)	Switching power below 60 °C (140 °F)	10 VA ⁽¹⁰⁾ 24 VA ⁽⁹⁾ 48 VA ⁽⁶⁾ 72 VA ⁽⁴⁾⁽¹³⁾	10 VA ⁽¹⁰⁾ 24 VA ⁽⁹⁾ 48 VA ⁽⁸⁾ 96 VA ⁽⁵⁾ 144 VA ⁽³⁾⁽¹³⁾	10 VA ⁽¹¹⁾ 50 VA ⁽⁸⁾ 110 VA ⁽⁷⁾ 220 VA ⁽⁴⁾ 360 VA ⁽²⁾ (13)	10 VA ⁽¹¹⁾ 50 VA ⁽⁹⁾ 110 VA ⁽⁷⁾ 220 VA ⁽⁶⁾ 500 VA ⁽³⁾ 750 VA ⁽¹⁾⁽¹³⁾
	Maximum switching power of hardened module at 6070 °C (140158 °F)	6 VA ⁽¹⁰⁾ 14.4 VA ⁽⁹⁾ 28.8 VA ⁽⁶⁾	6 VA ⁽¹⁰⁾ 14.4 VA ⁽⁹⁾ 28.8 VA ⁽⁸⁾ 57.6 VA ⁽⁵⁾	6 VA ⁽¹¹⁾ 30 VA ⁽⁸⁾ 66 VA ⁽⁷⁾ 132 VA ⁽⁴⁾	6 VA ⁽¹¹⁾ 30 VA ⁽⁹⁾ 66 VA ⁽⁷⁾ 132 VA ⁽⁶⁾ 300 VA ⁽³⁾
Direct current load in resistive mode (DC12) (L:R = 1 ms	Voltage	24 Vdc	4860 Vdc	100125 Vdc	
	Switching power below 60 °C (140 °F)	24 W ⁽⁷⁾ 48 W ⁽⁶⁾	40 W ⁽⁶⁾	45 W ⁽⁵⁾	
	Maximum switching power of hardened module at 6070 °C (140158 °F)	14.4 W ⁽⁷⁾ 28.8 W ⁽⁶⁾	24 W ⁽⁶⁾	45 W ⁽³⁾	
Direct current load in inductive mode (DC13) (L:R = 15 ms)	Voltage	24 Vdc	4860 Vdc	110125 Vdc	
	Switching power below 60 °C (140 °F)	10 W ⁽⁵⁾ 24 W ⁽³⁾ 48 W ⁽¹⁾	40 W ⁽¹⁾	15 W ⁽⁵⁾	
	Maximum switching power of hardened module at 6070 °C (140158 °F)	6 W ⁽⁵⁾ 14.4 W ⁽³⁾ 28.8 W ⁽¹⁾	24 W ⁽¹⁾	15 W ⁽¹⁾	

^{(1):} 0.04×10^6 cycles, (2): 0.05×10^6 cycles, (3): 0.06×10^6 cycles, (4): 0.07×10^6 cycles,

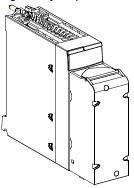
⁽⁵⁾: 0.1 x 10⁶ cycles, **(6)**: 0.15 x 10⁶ cycles, **(7)**: 0.2 x 10⁶ cycles, **(8)**: 0.3 x 10⁶ cycles,

^{(9): 0.5} x 10⁶ cycles, (10): 0.7 x 10⁶ cycles, (11): 1 x 10⁶ cycles, (12): All channels at 1, (13): Below 50 °C (122 °F)

Mechanical operations			20,000,000 minimum		
Response time	Activation		< 10 ms		
	Deactivation		< 13 ms		
Surge current maximum	10 A capacit	ive	t = 10 ms		
Built-in protection	Against indu voltage in A0		None. Fit an RC circuit or a ZNO type over voltage limiter in parallel on each output channel appropriate to the voltage in use.		
	Against inductive over voltage in DC modes		None. Fit a discharge diode on each output channel.		
	Against short-circuits and overloads		None. Fit a fast-blow fuse on each output channel or channel group.		
			NOTE: The current capability of fuse depends on the maximum switching load.		
Reliability	MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)		2,683,411		
Power dissipation ⁽¹²⁾			3.6 W + 0.03 x (I1 ² +I2 ² ++ I8 ²) Where I1, I2,I8 is the load current for each channel.		
Dielectric strength (at 50/60 Hz for 1 min.)	Channel to X-bus		3000 Vac		
	Channel to channel		2000 Vac		
	Channel to protective earth (PE)		2000 Vac		
Resistance of insulation (at 500 Vdc)	Channel to X-bus		>10 MΩ		
	Channel to channel		>10 MΩ		
Power supply consumption		Typical	40 mA		
		Maximum	75 mA		
	24 V ⁽¹²⁾	Typical	101 mA		
		Maximum	137 mA		

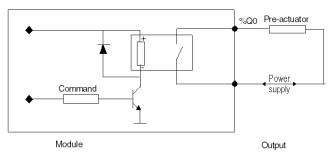
(1): 0.04×10^6 cycles, (2): 0.05×10^6 cycles, (3): 0.06×10^6 cycles, (4): 0.07×10^6 cycles,

(5): 0.1 x 10⁶ cycles, **(6)**: 0.15 x 10⁶ cycles, **(7)**: 0.2 x 10⁶ cycles, **(8)**: 0.3 x 10⁶ cycles,


(9): 0.5×10^6 cycles, **(10)**: 0.7×10^6 cycles, **(11)**: 1×10^6 cycles,

(12): All channels at 1, (13): Below 50 °C (122 °F)

Connecting the Module


At a Glance

The BMX DRA 0815 module is fitted with a removable 20-pin terminal block for the connection of eight relay output channels.

Output Circuit Diagram

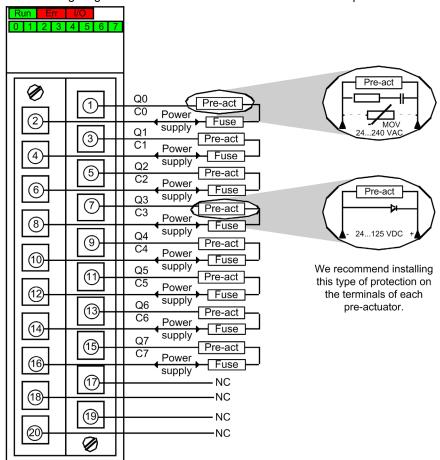
The following diagram shows the circuit of a relay output.

Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltage before connecting or disconnecting the module.


Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF OUTPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the pre-actuators.

power supply: 24...125 VDC or 24...240 VAC

fuse: Use appropriate fast-blow fuse for each relay.

NC: not connected

Chapter 21 BMX DRA 1605 Relay Output Modules

Subject of this Section

This section presents the BMX DRA 1605 module, its characteristics, and explains how it is connected to the pre-actuators.

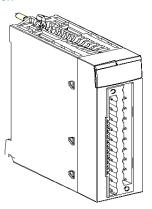
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	254
Characteristics	255
Connecting the Module	257

Introduction

Function


The BMX DRA 1605 module is a 24 VDC or 24...240 VAC discrete module connected via a 20-pin terminal block. Its 16 non-isolated relay output channels operate either on alternating current or direct current.

Ruggedized Version

The BMX DRA 1605H (hardened) equipment is the ruggedized version of the BMX DRA 1605 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

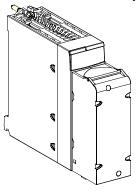
The characteristics in the table below apply to the modules BMX DRA 1605 and BMX DRA 1605H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Characteristics

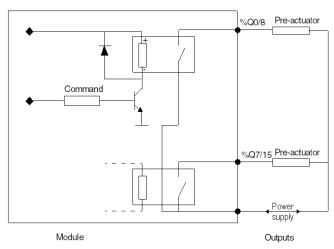
This table presents the general characteristics for the BMX DRA 1605 and BMX DRA 1605H modules:

Module type		Relay outputs for alternating and direct current				
Operating temperature	BMX DRA 1605	060 °C (32140 °F)				
	BMX DRA 1605H	-2570 °C (-	13158 °F)			
Rated voltage	Direct	24 VDC				
	Alternating	24240 VAC	:/2 A, Cos ф	= 1		
Voltage range	Direct	24 VDC / 2 A	(resistive loa	d)		
	Alternating	19264 VAC	/ 2 A, Cos ф	= 1		
Minimum switching load		5 VDC / 1 mA	۸.			
Maximum switching load		264 VAC / 12	5 VDC			
Mechanical service life	Number of switching	20 million or more				
Alternating current load in	Voltage	24 VAC	48 VAC	100120 VAC	200240 VAC	
resistive mode (AC12)	Power	50 VA ⁽²⁾	50 VA ⁽¹⁾ 80 VA ⁽²⁾	80 VA ⁽¹⁾ 200 VA ⁽²⁾	200 VA ⁽¹⁾	
Alternating current load in	Voltage	24 VAC	48 VAC	100120 VAC	200240 VAC	
inductive mode (AC15)	Power	36 VA ⁽¹⁾ 72 VA ⁽¹⁾ 120 VA ⁽²⁾	36 VA ⁽¹⁾ 72 VA(1) 120 VA ⁽²⁾	36 VA ⁽¹⁾ 72 VA ⁽¹⁾ 120 VA ⁽²⁾	36 VA ⁽¹⁾ Cos ϕ = 0,35 72 VA ⁽¹⁾ Cos ϕ = 0,7 120 VA ⁽²⁾ Cos ϕ = 0,35 240 VA ⁽²⁾ Cos ϕ = 0,7	
Direct current load in	Voltage	24 VDC		48 VDC		
resistive mode (DC12)	Power	24 W ⁽²⁾		24 W ⁽⁴⁾		
(1) : 3 x 10 ⁵ cycles, (2) : 1 x	10 ⁵ cycles, (3) : 7 x	10 ³ cycles, (4) :	5 x 10 ⁴ cycle	es, (5) : per chann	el at 1.	


Note Power (L/R = 7 ms) 3 W(1) 10 W(2) 24 W(3) 24 W(Direct current load in	Voltage		24 VDC	48 VDC	
Power (L/R = 20 ms)	inductive mode (DC13)		/D -			
Power (L/R = 20 ms) 24 W(³)		,	L/K =	T		
Response time Activation Condition Condition		7 1113)		10 W ⁽²⁾	10 W ⁽²⁾	
Deactivation Possible			L/R =	24 W ⁽³⁾	24 W ⁽³⁾	
Possible	Response time	Activation	n	< 8 ms		
Against alternating current inductive over voltage Against direct current inductive over voltage Against direct current inductive over voltage Against direct current inductive over voltage Against short-circuits and overloads None. Fit a discharge diode on each output. Against short-circuits and overloads None. Fit a fast-blow fuse of 12 A for each 8-channel group. Against short-circuits and overloads None. Fit a fast-blow fuse of 12 A for each 8-channel group. Against short-circuits and overloads None. Fit a fast-blow fuse of 12 A for each 8-channel group. Against short-circuits and overloads None. Fit a fast-blow fuse of 12 A for each 8-channel group. Against short-circuits and overloads None. Fit a fast-blow fuse of 12 A for each 8-channel group. Against short-circuits and overloads None. Fit a fast-blow fuse of 12 A for each 8-channel group. Against short-circuits and overloads None. Fit a fast-blow fuse of 12 A for each 8-channel group. Against short-circuits and overloads None. Fit a discharge diode on each output. Against short-circuits and overloads None. Fit a discharge diode on each output. Against short-circuits and overloads None. Fit a discharge diode on each output. Against short-circuits and overloads None. Fit a discharge diode on each output. Against short-circuits and overloads None. Fit a discharge diode on each output. Against short-circuits and overloads None. Fit a discharge diode on each output. Against short-circuits and overloads None. Fit a discharge diode on each output. Against short-circuits and overloads None. Fit a discharge diode on each output. Against short-circuits and overloads None. Fit a discharge diode on each output. Against short-circuits and overloads None. Fit a discharge diode on each output. Against short-circuits and overloads None. Fit a discharge diode on each output. Against short-circuits and overloads None. Fit a fast-blow fuse of 12 A for each 8-channel		Deactiva	ation	< 10 ms		
Current inductive over voltage Against direct current inductive over voltage Against direct current inductive over voltage Against short-circuits and overloads Aga	On-line module change			Possible		
Against short-circuits and overloads Against short-circuits and overloads 3 600 cycles per hour	Built-in protection	current i	nductive			
Short-circuits and overloads Short-circuits and overloads 3 600 cycles per hour		current i	nductive	None. Fit a discharge diode on each output.		
Power dissipation 3 W max 2000 V actual 2000 V actual		short-circuits and		None. Fit a fast-blow fuse of 12 A for each 8-channel group.		
Dielectric strength (at 50/60 Hz for 1 min.) 2000 V actual	Maximum switching freque	ency		3 600 cycles per hour		
(at 50/60 Hz for 1 min.) Resistance of insulation (at 500 VDC) Noise immunity In noise simulation below 1500 V actual, noise width of 1s and frequency of 25 to 60 Hz Reliability MTBF for continuous operation in hours at ambient temperature 30°C (86°F) 1 357 810 Power supply consumption 3.3 V Typical 79 mA Maximum 111 mA 24 V Typical 89 mA relay(5) Maximum 100 mA	Power dissipation			3 W max		
Noise immunity In noise simulation below 1500 V actual, noise width of 1s and frequency of 25 to 60 Hz Reliability MTBF for continuous operation in hours at ambient temperature 30°C (86°F) Power supply consumption 3.3 V Typical 79 mA Maximum 111 mA 24 V relay(5) Typical 89 mA Maximum 100 mA	Dielectric strength (at 50/60 Hz for 1 min.)			2000 V actual		
MTBF for continuous operation in hours at ambient temperature 30°C (86°F)	Resistance of insulation (at 500 VDC)		> 10 MΩ			
Continuous operation in hours at ambient temperature 30°C (86°F)	Noise immunity					
Consumption Maximum 111 mA 24 V relay ⁽⁵⁾ Typical R9 mA Maximum 89 mA Maximum 100 mA	Reliability	continuous operation in hours at ambient temperature 30°C		1 357 810		
24 V Typical 89 mA relay ⁽⁵⁾ Maximum 100 mA	Power supply	3.3 V	Typical	79 mA		
relay ⁽⁵⁾ Maximum 100 mA	consumption	Maximum		n 111 mA		
relay ⁽⁵⁾ Maximum 100 mA		24 V	Typical	89 mA		
(1): 3 x 10 ⁵ cycles, (2): 1 x 10 ⁵ cycles, (3): 7 x 10 ³ cycles, (4): 5 x 10 ⁴ cycles, (5): per channel at 1.		. (5)		1 100 mA		
	(1) : 3 x 10 ⁵ cycles, (2) : 1 x	c 10 ⁵ cycle	es, (3) : 7 x 1	10 ³ cycles, (4) : 5 x 10 ⁴ cycle	s, (5) : per channel at 1.	

NOTE: For the **BMX DRA 1605H** module, the maximum power must not exceed 24 VA per channel when operated at 70 $^{\circ}$ C (158 $^{\circ}$ F).

Connecting the Module


At a Glance

The BMX DRA 1605 module is fitted with a removable 20-pin terminal block for the connection of sixteen non-isolated relay output channels.

Output Circuit Diagram

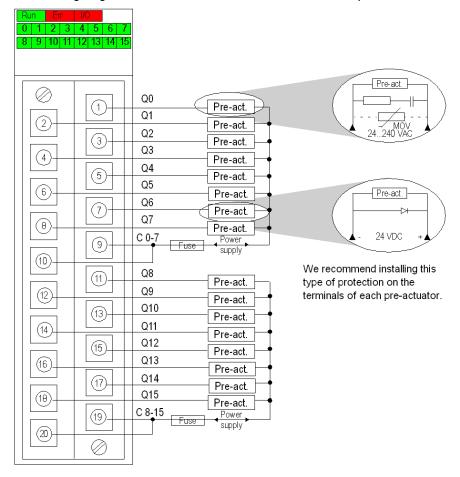
The following diagram shows the circuit of relay outputs.

Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.


Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF OUTPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the pre-actuators.

power supply: 24 VDC or 24...240 VAC

fuse: 1 fast blow fuse of 12 A for each 8-channel group

Chapter 22 BMX DRC 0805 Relay Output Modules

Subject of this Section

This section presents the BMX DRC 0805 module, its characteristics, and explains how it is connected to the pre-actuators.

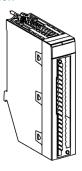
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	262
Characteristics	263
Connecting the Module	266

Introduction

Function


The BMX DRC 0805 module is a 5...125 Vdc or 24...240 Vac discrete module connected via a 40-pin terminal block. Its 8 relay output channels (NO/NC) operate either on alternating current or direct current.

Ruggedized Version

The BMX DRC 0805H (hardened) equipment is the ruggedized version of the BMX DRC 0805 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

The characteristics in the table below apply to the modules BMX DRC 0805 and BMX DRC 0805H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Characteristics

This table presents the general characteristics for the BMX DRC 0805 and BMX DRC 0805H modules:

Module type		NO/NC relay outputs for alternating and direct current		
Rated range	Alternating	24240 Vac		
	Direct	24125 Vdc		
Voltage range	Alternating	19264 Vac (4763 Hz)		
	Direct	5150 Vdc		
Operating temperature	BMX DRC 0805	0 °C to 60 °C (32 °F to 140 °F) with derating (see hereafter).		
	BMX DRC 0805H	-25 °C to 70 °C (-13 °F to 158 °F) with derating (see hereafter).		
Thermal current	temperature (in °C): I (A) 4 3 2 1 0 -25 -10 0	rating curve to the thermal current (in A) versus ambient 1.2 A 1.2 A 1.2 A 1.2 A 1.3 A 1.3 A 1.4 C 1.5 C 1.5 C 1.5 C 1.6 C 1.7 C 1.8 C 1.8 C 1.9 C		

(1): 0.04×10^6 cycles, **(2)**: 0.05×10^6 cycles, **(3)**: 0.06×10^6 cycles, **(4)**: 0.07×10^6 cycles,

(5): 0.1×10^6 cycles, **(6)**: 0.15×10^6 cycles, **(7)**: 0.2×10^6 cycles, **(8)**: 0.3×10^6 cycles,

(9): 0.5×10^6 cycles, **(10)**: 0.7×10^6 cycles, **(11)**: 1×10^6 cycles,

(12): All channel at 1, (13): Below 50 °C (122 °F)

Minimum switching load		5 Vdc / 10 mA			
Alternating current load in	Voltage	24 Vac	48 Vac	100120 Vac	200250 Vac
resistive mode (AC12)	Switching power below 60 °C (140 °F)	48 VA ⁽⁷⁾	48 VA ⁽⁸⁾ 96 VA ⁽⁶⁾	110 VA ⁽⁸⁾ 220 VA ⁽⁶⁾	220 VA ⁽⁸⁾ 500 VA ⁽⁶⁾
	Maximum switching power of hardened module at 6070 °C (140158 °F)	28.8 VA ⁽⁷⁾	28.8 VA ⁽⁸⁾ 57.6 VA ⁽⁶⁾	66 VA ⁽⁸⁾ 132 VA ⁽⁶⁾	132 VA ⁽⁸⁾ 300 VA ⁽⁶⁾
Alternating current load in	Voltage	24 Vac	48 Vac	100120 Vac	200250 Vac
inductive mode (AC15) (Power factor = 0.4)	Switching power below 60 °C (140 °F)	10 VA ⁽¹⁰⁾ 24 VA ⁽⁹⁾ 48 VA ⁽⁶⁾ 72 VA ⁽⁴⁾⁽¹³⁾	10 VA ⁽¹⁰⁾ 24 VA ⁽⁹⁾ 48 VA ⁽⁸⁾ 96 VA ⁽⁵⁾ 144 VA ⁽³⁾⁽¹³⁾	10 VA ⁽¹¹⁾ 50 VA ⁽⁸⁾ 110 VA ⁽⁷⁾ 220 VA ⁽⁴⁾ 360 VA ⁽²⁾ (13)	10 VA ⁽¹¹⁾ 50 VA ⁽⁹⁾ 110 VA ⁽⁷⁾ 220 VA ⁽⁶⁾ 500 VA ⁽³⁾ 750 VA ⁽¹⁾⁽¹³⁾
	Maximum switching power of hardened module at 6070 °C (140158 °F)	6 VA ⁽¹⁰⁾ 14.4 VA ⁽⁹⁾ 28.8 VA ⁽⁶⁾	6 VA ⁽¹⁰⁾ 14.4 VA ⁽⁹⁾ 28.8 VA ⁽⁸⁾ 57.6 VA ⁽⁵⁾	6 VA ⁽¹¹⁾ 30 VA ⁽⁸⁾ 66 VA ⁽⁷⁾ 132 VA ⁽⁴⁾	6 VA ⁽¹¹⁾ 30 VA ⁽⁹⁾ 66 VA ⁽⁷⁾ 132 VA ⁽⁶⁾ 300 VA ⁽³⁾
Direct current load in resistive	Voltage	24 Vdc	4860 Vdc	100125 Vdc	
mode (DC12) (L:R = 1 ms	Switching power below 60 °C (140 °F)	24 W ⁽⁷⁾ 48 W ⁽⁶⁾	40 W ⁽⁶⁾	45 W ⁽⁵⁾	
	Maximum switching power of hardened module at 6070 °C (140158 °F)	14.4 W ⁽⁷⁾ 28.8 W ⁽⁶⁾	24 W ⁽⁶⁾	45 W ⁽³⁾	
Direct current load in inductive	Voltage	24 Vdc	4860 Vdc	110125 Vdc	
mode (DC13) (L:R = 15 ms)	Switching power below 60 °C (140 °F)	10 W ⁽⁵⁾ 24 W ⁽³⁾ 48 W ⁽¹⁾	40 W ⁽¹⁾	15 W ⁽⁵⁾	
	Maximum switching power of hardened module at 6070 °C (140158 °F)	6 W ⁽⁵⁾ 14.4 W ⁽³⁾ 28.8 W ⁽¹⁾	24 W ⁽¹⁾	15 W ⁽¹⁾	

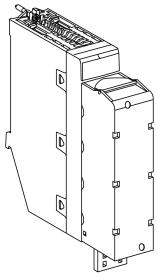
⁽¹⁾: 0.04×10^6 cycles, **(2)**: 0.05×10^6 cycles, **(3)**: 0.06×10^6 cycles, **(4)**: 0.07×10^6 cycles,

⁽⁵⁾: 0.1 x 10⁶ cycles, **(6)**: 0.15 x 10⁶ cycles, **(7)**: 0.2 x 10⁶ cycles, **(8)**: 0.3 x 10⁶ cycles,

^{(9): 0.5} x 10⁶ cycles, (10): 0.7 x 10⁶ cycles, (11): 1 x 10⁶ cycles, (12): All channel at 1, (13): Below 50 °C (122 °F)

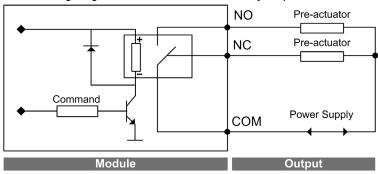
Mechanical operations			20,000,000 minimum		
Response time	Activation (to NO)	<10 ms		
Deactivation (n (to NC)	<13 ms		
Surge current maximum	10 A capac	itive	t = 10 ms		
Built-in protection	Against ind voltage in A		None. Fit an RC circuit or a ZNO type over voltage limiter in parallel on each output channel appropriate to the voltage in use.		
	Against ind voltage in [None. Fit a discharge diode on each output channel.		
	Against sho		None. Fit a fast-blow fuse on each output channel or channel group.		
			NOTE: The current capability of fuse depends on the maximum switching load.		
Reliability	MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)		2,683,411		
Power dissipation ⁽¹²⁾			$3.6 \text{ W} + 0.03 \text{ x} (11^2 + 12^2 + + 18^2)$ Where I1, I2,18 is the load current for each channel.		
Dielectric strength	Channel to	X-bus	3000 Vac		
(at 50/60 Hz for 1 min.)	Channel to	channel	2000 Vac		
	Channel to earth (PE)	protective	2000 Vac		
Resistance of insulation	Channel to	X-bus	>10 MΩ		
(at 500 Vdc)	Channel to	channel	>10 ΜΩ		
Power supply consumption	3.3 V	Typical	40 mA		
		Maximum	75 mA		
			101 mA		
	24 V ⁽¹²⁾	Typical	101 mA		

(1): 0.04×10^6 cycles, (2): 0.05×10^6 cycles, (3): 0.06×10^6 cycles, (4): 0.07×10^6 cycles,


^{(5):} 0.1×10^6 cycles, (6): 0.15×10^6 cycles, (7): 0.2×10^6 cycles, (8): 0.3×10^6 cycles,

^{(9): 0.5} x 10⁶ cycles, (10): 0.7 x 10⁶ cycles, (11): 1 x 10⁶ cycles, (12): All channel at 1, (13): Below 50 °C (122 °F)

Connecting the Module


At a Glance

The BMX DRC 0805 module is fitted with a removable 40-pin terminal block for the connection of eight relay output channels.

Output Circuit Diagram

The following diagram shows the circuit of a relay output.

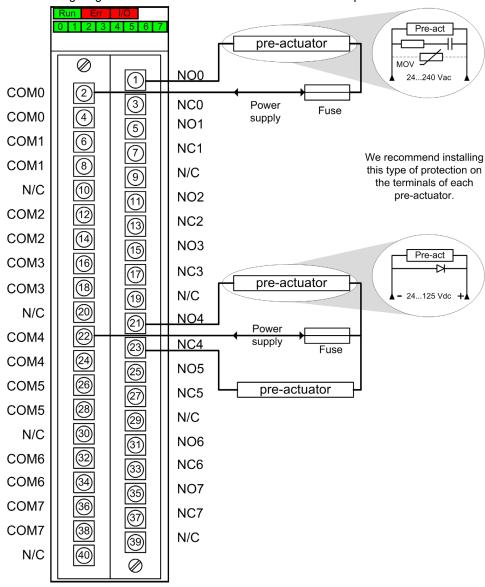
NO: Normally open output NC: Normally closed output

Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltage before connecting or disconnecting the module.


Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF OUTPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the pre-actuators.

Power supply: 24...125 Vdc or 24...240 Vac

Fuse: Use appropriate fast-blow fuse for each relay.

N/C: Not connected

Chapter 23 BMX DDO 3202 K Static Output Modules

Subject of this Section

This section presents the BMX DDO 3202 K module, its characteristics, and explains how it is connected to the pre-actuators.

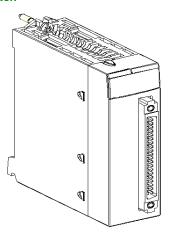
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	270
Characteristics	271
Connecting the Module	273

Introduction

Function


The BMX DDO 3202 K module is a 24 VDC discrete module connected via a 40-pin connector. It is a positive logic (or source) module: its 32 output channels provide current to the pre-actuators.

Ruggedized Version

The BMX DDO 3202 KC (coated) equipment is the ruggedized version of the BMX DDO 3202 K (standard) equipment. It can be used in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

The characteristics in the table below apply to the modules BMX DDO 3202 K and BMX DDO 3202 KC for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

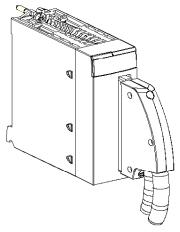
For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Characteristics

This table presents the general characteristics for the BMX DDO 3202 K and BMX DDO 3202 KC modules:

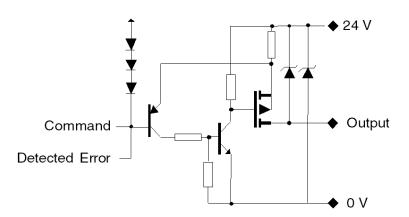
Module type		24 VDC positive logic static outputs	
Operating temperature	060 °C (32140 °F)		
Temperature derating	Apply the temperature derating curve (see page 35)		
Nominal values	Voltage	24 VDC	
	Current	0.1 A	
Threshold values	Voltage (including ripple)	1930 V (34 V possible for 1 hour/day)	
	Current/channel	0.125 A	
	Current/module	3.2 A	
Power of tungsten filament lamp	Maximum	1.2 W	
Leakage current	Leakage current At 0		
Voltage drop	At 1	< 1.5 V for I = 0.1 A	
Load impedance Minimum		220 Ω	
Response time ⁽¹⁾		1.2 ms	
Max. overload time before internal dama	ge	15 ms	
Reliability MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)		312 254	
Frequency of switching to inductive load		0.5 / LI ² Hz	
Paralleling of outputs		Yes (maximum of 3)	
Compatibility with IEC 61131-2 DC direct inputs		Yes (type 3 or no type)	
(1) All outputs are equipped with fast de time < L/R.(2) Provide a fuse to the +24 V pre-actus		romagnet. Electromagnet discharge	

Built-in protection	Against overvoltage	Yes, by Transil diode
	Against inversions	Yes, by inverted diode ⁽²⁾
	Against short-circuits and overloads	Yes, by current limiter and electric circuit- breaker 0.125 A < Id < 0.185 A
Fuse type	Internal	None
	External	1 fast blow fuse of 2 A for each 16-channel group
Pre-actuator voltage: monitoring threshold	OK	> 18 V
	Error	< 14 V
Pre-actuator voltage: monitoring response	On appearance	1 ms < T < 3 ms
time	On disappearance	8 ms < T < 30 ms
Power consumption 3.3 V	Typical	125 mA
	Maximum	166 mA
24 V pre-actuator consumption	Typical	46 mA
(excluding load current)	Maximum	64 mA
Power dissipation		3.6 W max.
Dielectric strength	Output / ground or output / internal logic	1500 V actual, 50 / 60 Hz for 1 min
	Between channel groups	500 VDC
Resistance of insulation		>10 MΩ (below 500 VDC)


⁽¹⁾ All outputs are equipped with fast demagnetization circuits for electromagnet. Electromagnet discharge time < L/R.

⁽²⁾ Provide a fuse to the +24 V pre-actuator supply

Connecting the Module


At a Glance

The BMX DDO 3202 K module is fitted with a 40-pin connector for the connection of thirty-two output channels.

Output Circuit Diagram

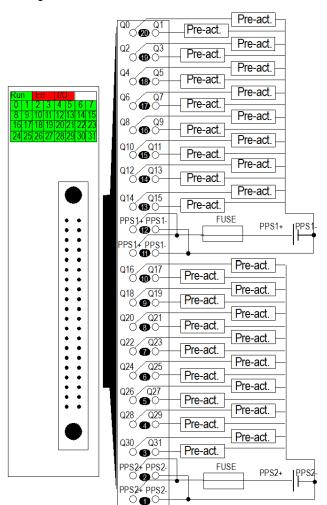
The following diagram shows the circuit of a direct current output (positive logic).

Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltage before connecting or disconnecting the module.


Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF INPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The diagram below shows the connection of the module to the pre-actuators.

power supply: 24 VDC

fuse: fast blow fuse of 2 A for each 16-channel group

pre-act: pre-actuator

PPS: pre-actuator power supply

Chapter 24 BMX DDO 6402 K Static Output Modules

Subject of this Section

This section presents the BMX DDO 6402 K module, its characteristics, and explains how it is connected to the pre-actuators.

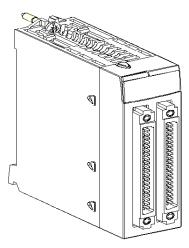
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	278
Characteristics	279
Connecting the Module	281

Introduction

Function


The BMX DDO 6402 K module is a 24 VDC discrete module connected via two 40-pin connectors. It is a positive logic (or source) module: its 64 output channels provide current to the pre-actuators.

Ruggedized Version

The BMX DDO 6402 KC (coated) equipment is the ruggedized version of the BMX DDO 6402 K (standard) equipment. It can be used in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

The characteristics in the table below apply to the modules BMX DDO 6402 K and BMX DDO 6402 KC for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

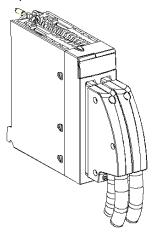
For detailed information, refer to chapter Operating and Storage Conditions (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Characteristics

This table presents the general characteristics for the BMX DDO 6402 K and BMX DDO 6402 KC modules:

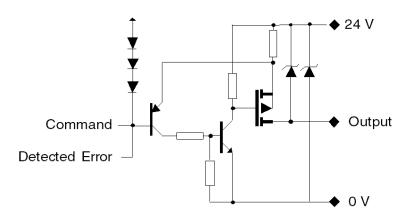
Module type	24 VDC positive logic static outputs		
Operating temperature	060 °C (32140 °F) Apply the temperature derating curve (see page 35)		
Temperature derating			
Nominal values	Voltage	24 VDC	
	Current	0.1 A	
Threshold values	Voltage (including ripple)	1930 V (34 V possible for 1 hour/day)	
	Current/channel	0.125 A	
	Current/module	6.4 A	
Power of tungsten filament lamp	Maximum	1.2 W	
Leakage current	At 0	100 μA for U = 30 V	
Voltage drop At 1		< 1.5 V for I = 0.1 A	
Load impedance Minimum		220 Ω	
Response time ⁽¹⁾		1.2 ms	
Max. overload time before internal	damage	15 ms	
Reliability MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)		159 924	
Frequency of switching to inductive	oload	0.5 / LI ² Hz	
Paralleling of outputs Compatibility with IEC 61131-2 DC direct inputs		Yes (maximum of 3)	
		Yes (type 3 and no type)	
(1) All outputs are equipped with fitime < L/R.(2) Provide a 2 A fuse to the +24 \	ast demagnetization circuits for electro	omagnet. Electromagnet discharge	

Built-in protection	Against over voltage	Yes, by Transil diode
	Against inversions	Yes, by inverted diode ⁽²⁾
	Against short-circuits and overloads	Yes, by current limiter and electric circuit- breaker 0.125 A < Id < 0.185 A
Fuse type	Internal	None
	External	1 fast blow fuse of 2 A for each 16-channel group
Pre-actuator voltage:	ОК	> 18 V
monitoring threshold	Error	< 14 V
Pre-actuator voltage:	On appearance	8 ms < T < 30 ms
monitoring response time	On disappearance	1 ms < T < 3 ms
Power consumption 3.3 V	Typical	160 mA
	Maximum	226 mA
24 V pre-actuator consumption	Typical	92 mA
(excluding load current)	Maximum	127 mA
Power dissipation		6.85 W max.
Dielectric strength	Output / ground or output / internal logic	1500 V actual, 50 / 60 Hz for 1 min
	Between channel groups	500 VDC
Resistance of insulation		>10 MΩ (below 500 VDC)


⁽¹⁾ All outputs are equipped with fast demagnetization circuits for electromagnet. Electromagnet discharge time < L/R.

⁽²⁾ Provide a 2 A fuse to the +24 V pre-actuator supply.

Connecting the Module


At a Glance

The BMX DDO 6402 K module is fitted with two 40-pin connectors for the connection of sixty-four output channels.

Output Circuit Diagram

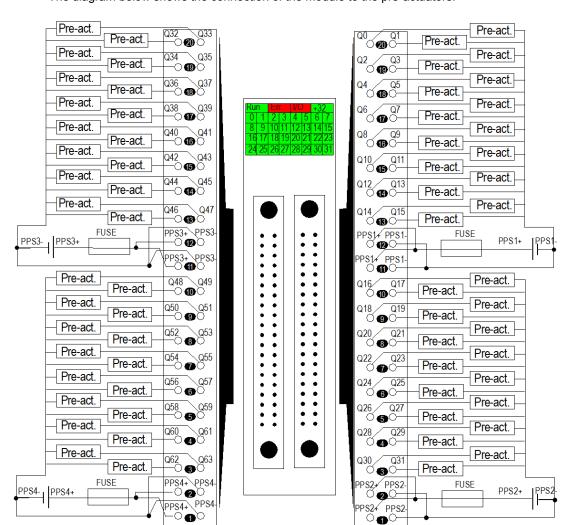
The following diagram shows the circuit of a direct current output (positive logic).

Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltage before connecting or disconnecting the module.


Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF INPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The diagram below shows the connection of the module to the pre-actuators.

power supply: 24 VDC

fuse: fast blow fuse of 2 A for each 16-channel group

pre-act: pre-actuator

PPS: pre-actuator power supply

Chapter 25 BMX DAO 1605 Triac Output Modules

Subject of this Section

This section presents the BMX DAO 1605 module, its characteristics, and explains how it is connected to the pre-actuators.

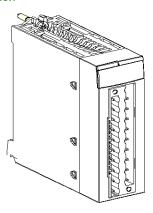
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	286
Characteristics	287
Connecting the Module	289

Introduction

Function


The BMX DAO 1605 module is a 100...240 VAC discrete module connected via a 20-pin terminal block. Its 16 triac output channels operate on alternating current.

Ruggedized Version

The BMX DAO 1605H (hardened) equipment is the ruggedized version of the BMX DAO 1605 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

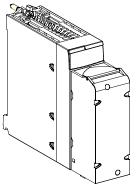
The characteristics in the table below apply to the modules BMX DAO 1605 and BMX DAO 1605H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Characteristics

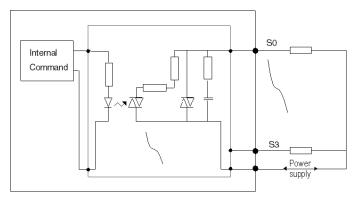
This table presents the general characteristics for the BMX DAO 1605 and BMX DAO 1605H modules:

Module type		100240 VAC triac outputs
Operating temperature	BMX DAO 1605	060 °C (32140 °F)
	BMX DAO 1605H	-2570 °C (-13158 °F)
Temperature derating		Apply the temperature derating curve (see page 35)
Nominal values	Voltage	100240 VAC
	Current	0.6 A / points
Threshold values	Voltage	100 mA at 24 VAC 25 mA at 100240 VAC
	Current/channel	0.6 A
	Current/module	2.4 A max/common (4.8 A max for all commons)
Maximum inrush current		20 A / cycle or less
Leakage current	At state 0	≤ 3 mA (for 240 VAC, 60 Hz) ≤ 1.5 mA (for 120 VAC, 60 Hz)
Residual voltage	At state 1	≤ 1.5 mA
Response time		1 ms + 1/(2xF)
Built-in protection	Against inductive over voltage in AC modes	None. Fit an RC circuit or a ZNO type over voltage limiter in parallel on each output appropriate to the voltage in use
	Against inductive over voltage	None. Fit a discharge diode on each output.
	against short-circuits and overloads	None. Fit a fast-blow fuse of 3 A on each channel or 4-channel group.
Command type		Zero crossing
Output protection		no protection
Dielectric maximum Voltage		2 830 VAC rms/3 cycles


Insulation Resistance		≥ 10 MΩ (by insulation resistance meter)
Noise immunity		By noise simulator of noise voltage, 1 µs noise width and 1 500 Vp-p 2560 Hz noise frequency
Power consumption 3.3 V	Typical	79 mA
	Maximum	111 mA

NOTE: For the BMX DAO 1605H module, at 70 $^{\circ}$ C (158 $^{\circ}$ F), the maximum threshold current must not exceed 0.24 A per channel and the maximum module current must not exceed 1.92 A.

Connecting the Module


At a Glance

The BMX DAO 1605 module is fitted with a removable 20-pin terminal block for the connection of sixteen triac output channels.

Output Circuit Diagram

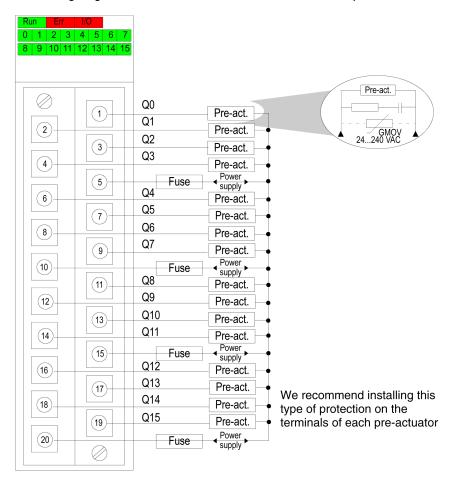
The following diagram shows the circuit of a alternating current triac output.

Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltage before connecting or disconnecting the module.


Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF OUTPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the pre-actuators.

power supply: 100...240 VAC

fuse: 1 fast blow fuse of 3 A for each 4-channel group

Chapter 26 BMX DAO 1615 Isolated Triac Output Modules

Subject of this Section

This section presents the BMX DAO 1615 module, its characteristics, and explains how it is connected to the pre-actuators.

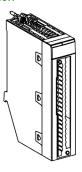
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	294
Characteristics	295
Connecting the Module	298

Introduction

Function


The BMX DAO 1615 module is a 24...240 Vac discrete module connected via a 40-pin terminal block. Its 16 isolated triac output channels operate on alternating current.

Ruggedized Version

The BMX DAO 1615H (hardened) equipment is the ruggedized version of the BMX DAO 1615 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

The characteristics in the table below apply to the modules BMX DAO 1615 and BMX DAO 1615H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Characteristics

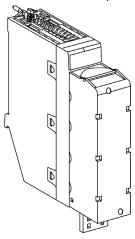
OVERHEATING HAZARD

Take into account the temperature derating of the discrete I/O modules at the installation to prevent the device from overheating and/or deteriorating.

Failure to follow these instructions can result in injury or equipment damage.

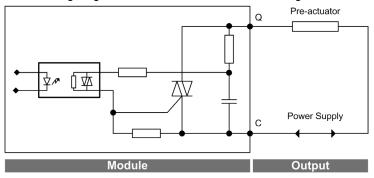
This table presents the general characteristics for the BMX DAO 1615 and BMX DAO 1615H modules:

Module type		24240 Vac16-channel Isolated Triac Output
Operating temperature	BMX DAO 1615	060 °C (32140 °F)
	BMX DAO 1615H	-2570 °C (-13158 °F)


Temperature derating	Apply the following derating cu ambient temperature (in °C): I 100 % 80 % 60 % 40 %	rve (total module output current (in %) versus	
	0 % -25 -10 0 10 NOTE: The curves apply to th	e BMX DAO 1615 in the temperature range apply to the BMX DAO 1615H in the temperature).	
Nominal values	Voltage	24240 Vac	
_	Current	3 A per channel.	
Operating range	Voltage	20264 Vac 4763 Hz	
Voltage minimum and	Frequency Voltage drop at state 1	≤ 1.55 Vac	
maximum	Maximum input voltage	300 Vac during 10 s 400 Vac during one cycle	
Current minimum and	Load current (minimum)	5 mA minimum.	
maximum	Current / 4 contiguous channels	4 A maximum continuous for the sum of the 4 channels.	
	Current / module	10 A maximum continuous.	
	Maximum inrush current (rms)	30 A per channel for 1 cycle.20 A per channel for 2 cycles.10 A per channel for 3 cycles.	
	Leakage current at state 0	≤ 2.5 mA at 240 Vac ≤ 2 mA at 115 Vac ≤ 1 mA at 48 Vac ≤ 1 mA at 24 Vac	
Response time		≤ 0.5 x (1/F)	

Built-in protection	Against inductive over voltage Against short-circuits and overloads		None. Fit an RC circuit or a ZNO type over voltage limiter in parallel on each pre-actuator appropriate to the voltage in use	
			None. Fit a 4 A fast blow fuse on each channel.	
Output protection (internal)			RC snubber suppression.	
Dielectric strength	Channel to X-bus		1780 Vac, 50/60 Hz for 1 min.	
	Channel to channel		1500 Vac, 50/60 Hz for 1 min.	
Insulation Resistance	Channel to X-bus		>10 MΩ (below 500 Vdc)	
	Channel to channel		>10 MΩ (below 500 Vdc)	
Applied dV/dt	Applied dV/dt		400 V/μs	
Backplane consumption	24 V Typical		50 mA	
		Maximum	60 mA	
	3.3 V	Typical	61 mA	
		Maximum	87 mA	

Connecting the Module


At a Glance

The BMX DAO 1615 module is fitted with a removable 40-pin terminal block for the connection of 16 triac isolated output channels.

Output Circuit Diagram

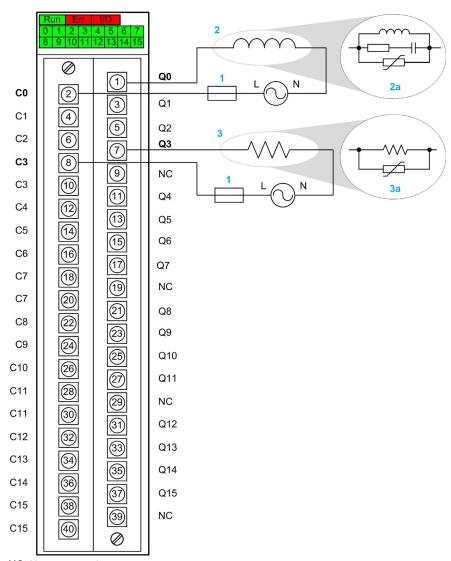
The following diagram shows the circuit of an alternating current triac isolated output:

Module Connection

⚠ ⚠ DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltage before connecting or disconnecting the module.


Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF OUTPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

NC: Not connected.

- 1 4 A fast blow fuse.
- 2 Inductive load.
- 3 Resistive load.

2a and 3a Recommended output protection (see note below).

NOTE: The recommended output protection for both inductive and resistive load is composed of a varistor (GMOV 24...240 Vac). The electronic characteristics of the varistor depend on the voltage required by the device used.

For inductive load, an optional RC filter (snubber) is recommended in addition to the varistor. The values for the resistor and the capacitor depend on the device used.

Each terminal capacity is one wire 22...18 AWG (0,34...1 mm²). For more details, refer to *terminal block wiring capacity (see page 48)*.

Output Usage Rules

Usage of the outputs with different phases, is dependent on the power supply voltage:

- In the range of 24...133 Vac, adjacent channel outputs can be used.
- In the range of 133...240 Vac, the channel outputs used, need to be separated by an unused channel output (for example Q1 and Q2 with phase A, skip Q3, and Q4 with phase B).

DAMAGE TO MODULE OUTPUTS

- Ensure that the AC power energizing each group is from a common, single-phase AC power source.
- Protect the module output when an external switch is used to control an inductive load in parallel with the module output. Use an external varistor in parallel with the switch.

Failure to follow these instructions can result in injury or equipment damage.

302

Chapter 27 BMX DDM 16022 Mixed Static Input/Output Module

Subject of this Section

This section presents the BMX DDM 16022 module, its characteristics, and explains how it is connected to the sensors and pre-actuators.

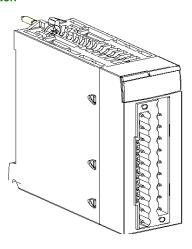
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	304
Characteristics	305
Connecting the Module	309

Introduction

Function


The BMX DDM 16022 module is a 24 VDC discrete module connected via a 20-pin terminal block. It is a positive logic module: its 8 input channels receive current from the sensors (sink) and its 8 output channels provide current to the pre-actuators (source).

Ruggedized Version

The BMX DDM 16022H (hardened) equipment is the ruggedized version of the BMX DDM 16022 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

The characteristics in the tables below apply to the modules BMX DDM 16022 and BMX DDM 16022H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Input Characteristics

The following table shows the general input characteristics of the BMX DDM 16022 and BMX DDM 16022H modules:

Input module type		24 VDC positive logic inputs		
Operating temperature BMX DDM 16		6022	060 °C (32140 °F)	
	BMX DDM 16022H		-2570 °C (-13158 °F)	
Nominal input values		Voltage	24 VDC	
		Current	3.5 mA	
Threshold input values	At 1	Voltage	≥ 11 V	
		Current	> 2 mA for U ≥ 11 V	
	At 0	Voltage	5 V	
		Current	≤ 1.5 mA	
	Sensor suppl	•	1930 V (possibly up to 34 V, limited to	
	(including ripple)		1 hour/day)	
Input impedance	At nominal U		6.8 kΩ	
Response time	Typical		4ms	
	Maximum		7ms	
Input type			Current sink	
Input type in compliance with	IEC 61131-2	standard	Type 3	
Reverse polarity			Protected	
Fuse type	Internal		None	
	External		1 fast blow fuse of 0.5 A for 8-channel group	
2-wire / 3-wire proximity sensor compatibility (IEC 60947-5-2 standard compliant)		2-wire (DC), and 3-wire (DC) PNP any type (see page 90)		
Reliability	MTBF for continuous operation in hours at ambient temperature 30 °C (86°F)		427 772	

Dielectric strength	Primary/secondary	1500 V actual, 50 / 60 Hz for 1 min.	
	Between input/output groups	500 VCC	
Resistance of insulation		>10 MΩ (below 500 VDC)	
Paralleling of inputs		No	
Sensor voltage: monitoring	OK	> 18 V	
threshold	Error	< 14 V	
Sensor voltage: monitoring response time at 24 V (-15% +20%)	On appearance	8 ms < T < 30 ms	
	On disappearance	1 ms < T < 3 ms	
Power consumption 3.3 V	Typical	79 mA	
	Maximum	111 mA	
24 V pre-actuator	Typical	59 mA	
consumption (excluding load current)	Maximum	67 mA	
Power dissipation		3.7 W max.	

NOTE: These characteristics are available also for the **BMX DDM 16022H** in the temperature range -25...60 °C (-13...140 °F). At +70 °C (158 °F), the maximum voltage value of input Sensor supply must not exceed 26.4 V.

A WARNING

LOSS OF INPUT FUNCTION

Do not operate the **BMX DDM 16022H** at 70 $^{\circ}$ C (158 $^{\circ}$ F) if the sensor power supply is greater than 29.0 V or less than 21.1 V. Overheating the module can cause the loss of the input function.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

General Output Characteristics

The following table shows the general output characteristics of the BMX DDM 16022 and BMX DDM 16022H modules:

Output module type		24 VDC positive logic static outputs	
Operating temperature	BMX DDM 16022	060 °C (32140 °F)	
	BMX DDM 16022H	-2570 °C (-13158 °F)	
Temperature derating	Apply the temperature derating curve (see page 35)		
Nominal values	Voltage	24 VDC	
	Current	0.5 A	
Threshold values	Voltage (including ripple)	1930 V (34 V possible for 1 hour/day)	
	Current/channel	0.625 A	
	Current/module	5 A	
Power of tungsten filament lamp	Maximum	6 W	
Leakage current	At 0	< 0.5 mA	
Voltage drop	At 1	< 1.2 V	
Load impedance	Minimum	48 Ω	
Response time ⁽¹⁾		1.2 ms	
Max. overload time before internal damage		15 ms	
Reliability MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)		427 772	
Frequency of switching to inductive load		0.5 / Ll ² Hz	
Paralleling of outputs		Yes (maximum of 2)	
Compatibility with IEC 61131-2 DC direct input	uts	Yes (type 3 and no type)	
Built-in protection	Against over voltage	Yes, by Transil diode	
	Against inversions	Yes, by inverted diode ⁽²⁾	
	Against short-circuits and overloads	Yes, by current limiter and electric circuit-breaker 1.5 In < Id < 2 In	
Fuse type	Internal	None	
	External	1 fast blow fuse of 6.3 A for 8-channel group	
(1) All outputs are equipped with fast demag time < L/R.(2) Provide a 6.3 A fuse to the +24 V pre-act		tromagnets. Electromagnet discharge	

Pre-actuator voltage: monitoring threshold	OK	> 18 V
	Error	< 14 V
Pre-actuator voltage: monitoring response	On appearance	8 ms < T < 30 ms
time at 24 V (-15% +20%)	On disappearance	1 ms < T < 3 ms
Power consumption 3.3 V	Typical	79 mA
	Maximum	111 mA
24 V pre-actuator consumption	Typical	59 mA
(excluding load current)	Maximum	67 mA
Power dissipation		3.7 W max.
Dielectric strength	Output / ground or output / internal logic	1500 V actual, 50 / 60 Hz for 1 min.
Resistance of insulation		>10 MΩ (below 500 VDC)

⁽¹⁾ All outputs are equipped with fast demagnetization circuits for electromagnets. Electromagnet discharge time < L/R.

NOTE: The characteristics in this table also apply to the **BMX DDM 16022H** in the temperature range -25...60 °C (-13...140 °F). At 70 °C (140 °F):

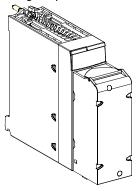
- The maximum voltage of the pre-actuator power supply must not exceed 26.4 V.
- The maximum output current must not exceed 0.55 A.

▲ WARNING

LOSS OF OUTPUT FUNCTION

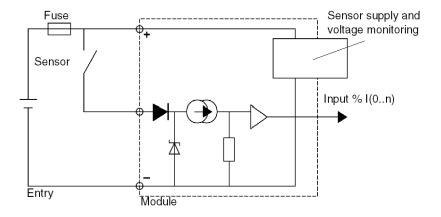
Do not operate the **BMX DDM 16022H** at 70 $^{\circ}$ C (158 $^{\circ}$ F) if the pre-actuator power supply is greater than 29.0 V or less than 21.1 V. Overheating the module can cause the loss of the output function.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

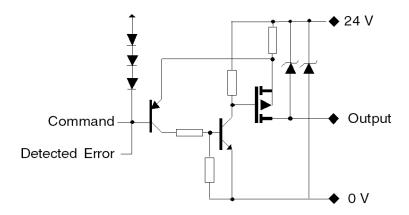

308

⁽²⁾ Provide a 6.3 A fuse to the +24 V pre-actuator supply

Connecting the Module


At a Glance

The BMX DDM 16022 module is fitted with a removable 20-pin terminal block for the connection of eight input channels and eight output channels.


Input Circuit Diagram

The following diagram shows the circuit of a direct current input (positive logic).

Output Circuit Diagram

The following diagram shows the circuit of a direct current output (positive logic).

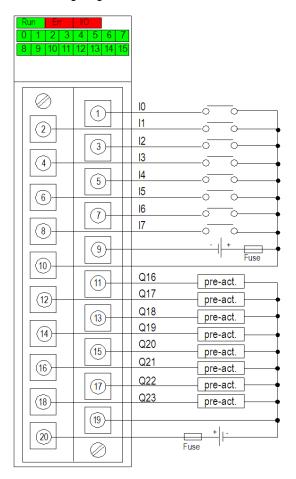
Module Connection

A A DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.

Failure to follow these instructions will result in death or serious injury.


A CAUTION

LOSS OF INPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the sensors and pre-actuators.

power supply: 24 VDC

input fuse: fast blow fuse of 0.5 A output fuse: fast blow fuse of 6.3 A

pre-act: pre-actuator

Sensor Power Outage

After a power sensor outage, if the **Supply monitoring** check box is not selected in the module configuration screen then the digital input can stay active.

A WARNING

DIGITAL INPUT STATE INACTIVE AFTER A SENSOR POWER OUTAGE

Do not click to clear the **Supply monitoring** check box in the module configuration screen to guarantee the digital input state inactive after sensor power outage.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

To access the **Supply monitoring** check box, refer to chapter *How to Modify the External Power Supply Error Monitoring Parameter (see page 400).*

After the sensor power outage, the I/O (red) LED of the module switches on and the last recorded position of the sensor is displayed by the input channel status LED's.

A WARNING

CHANNEL LED INFORMATION NOT MATCHING SENSORS POSITION

After a sensor power outage:

- The I/O error LED is on
- Do not take into account the input LEDs information (they show the last recorded position of the sensors, not their real positions)
- Check the real positions on the sensors.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Chapter 28 BMX DDM 16025 Mixed Relay Input/Output module

Subject of this Section

This section presents the BMX DDM 16025 module, its characteristics, and explains how it is connected to the sensors and pre-actuators.

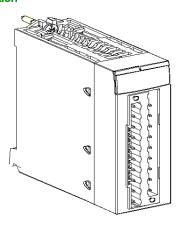
What Is in This Chapter?

This chapter contains the following topics:

Topic	Page
Introduction	314
Characteristics	315
Connecting the Module	319

Introduction

Function


The BMX DDM 16025 module is a 24 VDC discrete module connected via a 20-pin terminal block. It is a positive logic module: its 8 input channels receive current from the sensors (sink). The 8 isolated relay outputs operate either on direct current (24 VDC) or alternating current (24...240 VAC).

Ruggedized Version

The BMX DDM 16025H (hardened) equipment is the ruggedized version of the BMX DDM 16025 (standard) equipment. It can be used at extended temperatures and in harsh chemical environments.

For more information, refer to chapter *Installation in More Severe Environments (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

Illustration

Characteristics

Altitude Operating Conditions

The characteristics in the tables below apply to the modules BMX DDM 16025 and BMX DDM 16025H for use at altitude up to 2000 m (6560 ft). When the modules operate above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions* (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).

General Input Characteristics

This table presents the general input characteristics for the BMX DDM 16025 and BMX DDM 16025H modules:

Input module type			Eight 24 VDC positive logic inputs
Operating temperature	BMX DDM	16025	060 °C (32140 °F)
	BMX DDM	16025H	-2570 °C (-13158 °F)
Nominal input values		Voltage	24 VDC
		Current	3.5 mA
Threshold input values	At 1	Voltage	≥ 11 V
		Current	≥ 2 mA for U ≥ 11 V
	At 0	Voltage	5 V
		Current	< 1.5 mA
	Sensor sup	ply (including ripple)	1930 V (possibly up to 34 V, limited to 1 hour/day)
Input impedance	At nominal	U	6.8 kΩ
Response time	Typical		4 ms
	Maximum		7 ms
Input type			Current sink
Input type in compliance with IEC	61131-2 standard		Type 3
Reverse polarity			Protected
Fuse type	Internal		None
	External		1 fast blow fuse of 0.5 A for 8-channel group
2-wire / 3-wire proximity sensor compatibility (IEC 60947-5-2 standard compliant)			2-wire (DC), and 3-wire (DC) PNP any type (see page 90)
Reliability	MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)		835 303

Dielectric strength	Primary/secondary	1500 V actual, 50 / 60 Hz for 1 min.
	Between input/output groups	500 VDC
Resistance of insulation		>10 MΩ (below 500 VDC)
Paralleling of inputs		No
Sensor voltage: monitoring threshold	ОК	> 18 V
	Error	< 14 V
Sensor voltage: monitoring response time at 24V (-15% +20%)	On appearance	8 ms < T < 30 ms
	On disappearance	1 ms < T < 3 ms
Power consumption 3.3 V	Typical	35 mA
	Maximum	50 mA
24 V pre-actuator consumption	Typical	79 mA
(excluding load current)	Maximum	111 mA
Power dissipation		3.1 W max.

NOTE: For the **BMX DDM 16025H**, at 70 $^{\circ}$ C (158 $^{\circ}$ F) the maximum pre-actuator power supply must not exceed 26.4 V.

A WARNING

LOSS OF INPUT FUNCTION

Do not operate the **BMX DDI 16025H** at 70 $^{\circ}$ C (158 $^{\circ}$ F) if the sensor power supply is greater than 29.0 V or less than 21.1 V. Overheating the module can cause the loss of the input function.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

General Output Characteristics

The following table shows the general output characteristics of the BMX DDM 16025 and BMX DDM 16025H modules:

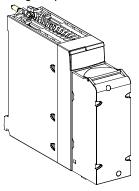
Output module type		Eight 24 VDC/24-240 VAC relay outputs
Operating temperature	BMX DDM 16025	060 °C (32140 °F)
	BMX DDM 16025H	-2570 °C (-13158 °F)
Nominal values	Switching direct voltage	24 VDC resistive load
	Switching direct current	2 A resistive load
	Switching alternating voltage	220 VAC, Cos Φ = 1
	Switching alternating current	2 A, Cos Φ = 1
Minimum switching load	Voltage / Current	5 VDC / 1 mA.
Maximum switching load	Voltage	264 VAC / 125 VDC
On-line module change		Possibility
Response time	Activation	≤ 8 ms
	Deactivation	≤ 10 ms
Mechanical service life	Number of switching	20 million or more
Reliability	MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)	835 303
Max. switching frequency	Cycles per hour	3 600
Electrical service life		Switching voltage / current
		200 VAC / 1.5 A, 240 VAC / 1 A, Cos $Φ = 0.7^{(1)}$
		200 VAC / 0.4 A, 240 VAC / 0.3 A, Cos Φ = 0.7 ⁽²⁾
		200 VAC / 1 A, 240 VAC / 0.5 A, Cos Φ = $0.35^{(1)}$
		200 VAC / 0.3 A, 240 VAC / 0.15 A, Cos Φ = $0.35^{(2)}$
		200 VAC / 1.5 A, 240 VAC / 1 A, Cos $Φ = 0.7^{(1)}$
		200 VAC / 0.4 A, 240 VAC / 0.3 A, Cos Φ = $0.7^{(2)}$
Noise immunity		In noise simulation, 1500 V actual, width 1s and 25 to 60 Hz
Fuse type	Internal	None
	External	1 fast blow fuse of 12 A for 8-channel group
Power consumption 3.3 V	Typical	79 mA
	Maximum	111 mA
(1) 1 x 10 ⁵ cycles (2) 3 x 10 ⁵ cycles		

24 V pre-actuator consumption	Typical	36 mA	
	Maximum	58 mA	
Power dissipation		3.1 W max.	
Dielectric strength	Max. voltage	2830 VAC rms / cycles	
Resistance of insulation		10 ΜΩ	
(1) 1 x 10 ⁵ cycles (2) 3 x 10 ⁵ cycles			

NOTE: For the **BMX DDM 16025H**, at 70 °C (158 °F) the maximum pre-actuator power supply must not exceed 24 VA.

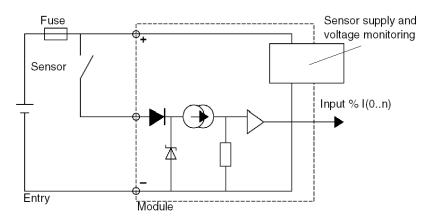
A WARNING

LOSS OF OUTPUT FUNCTION

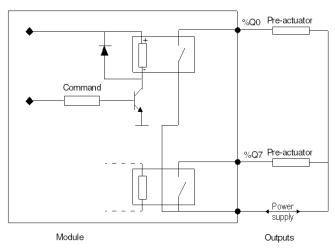

Do not operate the **BMX DDI 16025H** at 70° C (158°F) if the pre-actuator power supply is greater than 28.8 V or less than 19.2 V. Overheating the module can cause the loss of the output function.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Connecting the Module


At a Glance

The BMX DDM 16025 module is fitted with a removable 20-pin terminal block for the connection of eight input channels and eight isolated relay output channels.


Input Circuit Diagram

The following diagram shows the circuit of a direct current input (positive logic).

Output Circuit Diagram

The following diagram shows the circuit of relay outputs.

Module Connection

⚠ A DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.

Failure to follow these instructions will result in death or serious injury.

A CAUTION

LOSS OF INPUT FUNCTION

Install the correct rating and type of fuses.

Failure to follow these instructions can result in injury or equipment damage.

8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 10 (1) 11 12 (3) 13 14 (5) 15 16 (7)17 8 (9) Fuse Pre-act. (10) Q16 (11)Pre-act. Q17 (12` Pre-act. 24...240 VA Q18 (13) Pre-act. Q19 (14) Pre-act. Q20 (15) Pre-act. Q21 (16 Pre-act. Pre-act. Q22 (17)Pre-act. Q23 (18) Pre-act. 24 VDC Power (19) supply (20) We recommend installing this type of protection on the terminals of each pre-actuator.

The diagram below shows the connection of the module to the sensors and pre-actuators.

input power supply: 24 VDC

output power supply: 24 VDC or 24...240 VAC

input fuse: 1 fast blow fuse of 0.5 A **output fuse:** 1 fast blow fuse of 12 A

pre-act: pre-actuator

Sensor Power Outage

After a power sensor outage, if the **Supply monitoring** check box is not selected in the module configuration screen then the digital input can stay active.

A WARNING

DIGITAL INPUT STATE INACTIVE AFTER A SENSOR POWER OUTAGE

Do not click to clear the **Supply monitoring** check box in the module configuration screen to guarantee the digital input state inactive after sensor power outage.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

To access the **Supply monitoring** check box, refer to chapter *How to Modify the External Power Supply Error Monitoring Parameter (see page 400).*

After the sensor power outage, the I/O (red) LED of the module switches on and the last recorded position of the sensor is displayed by the input channel status LED's.

A WARNING

CHANNEL LED INFORMATION NOT MATCHING SENSORS POSITION

After a sensor power outage:

- The I/O error LED is on
- Do not take into account the input LEDs information (they show the last recorded position of the sensors, not their real positions)
- Check the real positions on the sensors.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

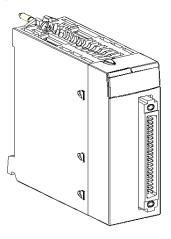
Chapter 29 BMX DDM 3202 K Mixed Static Input/Output Module

Subject of this Section

This section presents the BMX DDM 3202 K module, its characteristics, and explains how it is connected to the sensors and pre-actuators.

What Is in This Chapter?

This chapter contains the following topics:


Topic	Page
Introduction	324
Characteristics	325
Connecting the Module	328

Introduction

Function

The BMX DDM 3202 K module is a 24 VDC discrete module connected via a 40-pin connector. It is a positive logic module: its 16 input channels receive current from the sensors (sink) and its 16 output channels provide current to the pre-actuators (source).

Illustration

Characteristics

Altitude Operating Conditions

The characteristics in the tables below apply to the module BMX DDM 3202 K for use at altitude up to 2000 m (6560 ft). When the module operates above 2000 m (6560 ft), apply additional derating.

For detailed information, refer to chapter *Operating and Storage Conditions (see Modicon M580, M340, and X80 I/O Platforms, Standards and Certifications).*

General Input Characteristics

The following table shows the general input characteristics of the BMX DDM 3202 K module:

Input module type			24 VDC positive logic inputs	
Operating temperature			060 °C (32140 °F)	
Nominal input values		Voltage	24 VDC	
		Current	2.5 mA	
Threshold input values	At 1	Voltage	≥ 11 V	
		Current	> 2 mA for U ≥ 11 V	
	At 0	Voltage	5 V	
		Current	< 1.5 mA	
	Sensor supply (including ripple)	1930 V (possibly up to 34 V, limited to 1 hour/day)	
Input impedance	At nominal U		9.6 kΩ	
Response time	Typical		4 ms	
	Maximum		7 ms	
Input type			Current sink	
Input type in compliance with	n IEC 61131-2 stan	ndard	Type 3	
Reverse polarity			Protected	
2-wire / 3-wire proximity sens standard compliant)	sor compatibility (II	EC 60947-5-2	2-wire (DC), and 3-wire (DC) PNP any type (see page 90)	
Fuse type	Internal		None	
	External		1 fast blow fuse of 0.5 A for 16-channel group	
Reliability	MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)		650 614	
Dielectric strength	electric strength Primary/secondary		1500 V actual, 50 / 60 Hz for 1 min.	
	Between input/o	output groups	500 VDC	
Resistance of insulation			>10 MΩ (below 500 VDC)	
Paralleling of inputs			No	

Sensor voltage: monitoring threshold	OK	> 18 V
	Error	< 14 V
Sensor voltage: monitoring	On appearance	8 ms < T < 30 ms
response time at 24 V (-15% +20%)	On disappearance	1 ms < T < 3 ms
Power consumption 3.3 V	Typical	125 mA
	Maximum	166 mA
24 V pre-actuator	Typical	69 mA
consumption (excluding load current)	Maximum	104 mA
Power dissipation		4 W max.

General Output Characteristics

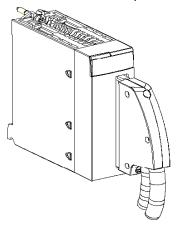
The following table shows the general output characteristics of the BMX DDM 3202 K module:

Output module type	24 VDC positive logic static outputs	
Operating temperature	060 °C (32140 °F)	
Temperature derating		Apply the temperature derating curve (see page 35)
Nominal values	Voltage	24 VDC
	Current	0.1 A
Threshold values	Voltage (including ripple)	1930 V (34 V possible for 1 hour/day)
	Current/channel	0.125 A
	Current/module	3.2 A
Power of tungsten filament lamp Maximum		1.2 W
Leakage current	at 0	100 μA for U = 30 V
Voltage drop	at 1	< 1.5 V for I = 0.1 A
Load impedance	Minimum	220 Ω
Response time ⁽¹⁾		1.2 ms
Max. overload time before internal damage		15 ms
Reliability MTBF for continuous operation in hours at ambient temperature 30 °C (86 °F)		650 614
Frequency of switching to inductive load	0.5 / LI ² Hz	
Paralleling of outputs		Yes (maximum of 3)

(1) All outputs are equipped with fast demagnetization circuits for electromagnet. Electromagnet discharge time < L/R.

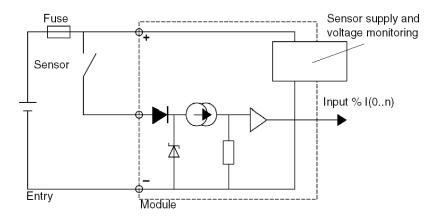
(2) Provide a 2 A fuse to the +24 V pre-actuator supply

Compatibility with IEC 61131-2 DC direct inputs	Yes (type 3 and no type)	
Built-in protection	Against over voltage	Yes, by Transil diode
•	Against inversions	Yes, by inverted diode ⁽²⁾
	Against short-circuits and overloads	Yes, by current limiter and electric circuit- breaker 0.125 A < Id < 0.185 A
Fuse type	Internal	None
	External	1 fast blow fuse of 2 A for 16-channel group
Pre-actuator voltage: monitoring threshold	ОК	> 18 V
	Error	< 14 V
Pre-actuator voltage: monitoring response time	On appearance	8 ms < T < 30 ms
at 24 V (-15% +20%)	On disappearance	1 ms < T < 3 ms
Power consumption 3.3 V	Typical	125 mA
	Maximum	166 mA
24 V pre-actuator consumption	Typical	69 mA
(excluding load current)	Maximum	104 mA
Power dissipation		4 W max.
Dielectric strength	Output / ground or output / internal logic	1500 V actual, 50 / 60 Hz for 1 min.
Resistance of insulation	>10 MΩ (below 500 VDC)	
(1) All outputs are equipped with fast demagne	etization circuits for electrom	agnet Electromagnet discharge


⁽¹⁾ All outputs are equipped with fast demagnetization circuits for electromagnet. Electromagnet discharge time < L/R.

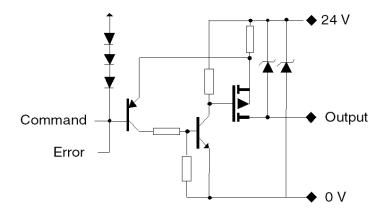
⁽²⁾ Provide a 2 A fuse to the +24 V pre-actuator supply

Connecting the Module


At a Glance

The BMX DDM 3202 K module is fitted with a 40-pin connector for the connection of sixteen input channels and sixteen output channels.

Input Circuit Diagram


The following diagram shows the circuit of a direct current input (positive logic).

328 35012474 10/2019

Output Circuit Diagram

The following diagram shows the circuit of a direct current output (positive logic).

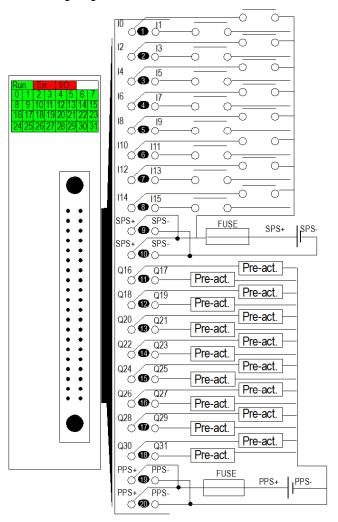
Module Connection

A A DANGER

HAZARD OF ELECTRICAL SHOCK, EXPLOSION OR ARC FLASH

Switch off the sensor and pre-actuator voltages before connecting or disconnecting the module.

Failure to follow these instructions will result in death or serious injury.


A CAUTION

LOSS OF INPUT FUNCTION

Install the correct rating and type of fuse.

Failure to follow these instructions can result in injury or equipment damage.

The following diagram shows the connection of the module to the sensors and pre-actuators.

power supply: 24 VDC

input fuse: fast blow fuse of 0.5 A **output fuse:** fast blow fuse of 2 A

pre-act: pre-actuator
SPS: sensor power supply
PPS: pre-actuator power supply

330 35012474 10/2019

Sensor Power Outage

After a power sensor outage, if the **Supply monitoring** check box is not selected in the module configuration screen then the digital input can stay active.

A WARNING

DIGITAL INPUT STATE INACTIVE AFTER A SENSOR POWER OUTAGE

Do not click to clear the **Supply monitoring** check box in the module configuration screen to guarantee the digital input state inactive after sensor power outage.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

To access the **Supply monitoring** check box, refer to chapter *How to Modify the External Power Supply Error Monitoring Parameter (see page 400).*

After the sensor power outage, the I/O (red) LED of the module switches on and the last recorded position of the sensor is displayed by the input channel status LED's.

A WARNING

CHANNEL LED INFORMATION NOT MATCHING SENSORS POSITION

After a sensor power outage:

- The I/O error LED is on
- Do not take into account the input LEDs information (they show the last recorded position of the sensors, not their real positions)
- Check the real positions on the sensors.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

332 35012474 10/2019

Chapter 30

TELEFAST 2 Connection Interface Links for the Discrete I/O Modules

Aim of this Chapter

This chapter describes the TELEFAST 2 interface links for the discrete input/output modules.

What Is in This Chapter?

This chapter contains the following sections:

Section	Topic	Page
30.1	Introduction to the TELEFAST 2 Connection Interfaces for Discrete I/O	334
30.2	Connection Principles for the TELEFAST 2 Interfaces for Discrete I/O	345
30.3	TELEFAST 2 ABE-7H08R10/08R11 and ABE-7H16R10/16R11 Connection Bases	351
30.4	TELEFAST 2 ABE-7H12R10/12R11 Connection Bases	353
30.5	TELEFAST 2 ABE-7H08R21 and ABE-7H16R20/16R21/16R23 Connection Bases	355
30.6	TELEFAST 2 ABE-7H12R20/12R21 Connection Bases	357
30.7	TELEFAST 2 ABE-7H08S21/16S21 Connection Bases	359
30.8	TELEFAST 2 ABE-7H12S21 Connection Base	361
30.9	TELEFAST 2 ABE-7H16R30/16R31 Connection Bases	363
30.10	TELEFAST 2 ABE-7H12R50 Connection Base	365
30.11	TELEFAST 2 ABE-7H16R50 Connection Base	367
30.12	TELEFAST 2 ABE-7H16F43 Connection Base	369
30.13	TELEFAST 2 ABE-7H16S43 Connection Base	371
30.14	TELEFAST 2 Connection Base Accessories	373

Section 30.1

Introduction to the TELEFAST 2 Connection Interfaces for Discrete I/O

Aim of this section

This section describes the range of **TELEFAST 2** products which allow the discrete input and output modules to be connected quickly to the operating pieces.

What Is in This Section?

This section contains the following topics:

Topic	Page
General Overview of TELEFAST 2 Connection Interfaces for Discrete I/O Modules	335
TELEFAST 2 Connection Bases Catalog	336
Combination of Discrete I/O Modules and TELEFAST 2 Connection Bases	343

334 35012474 10/2019

General Overview of TELEFAST 2 Connection Interfaces for Discrete I/O Modules

At a Glance

The TELEFAST 2 system is a group of products which enableS discrete input and output modules to be quickly connected to operational components. It replaces 20-pin terminal blocks, thus doing away with single wire connections.

The TELEFAST 2 system, which consists of connection bases for interfaces and connection cables, can only be connected to modules which are fitted with 40-pin connectors.

Several base types can be identified:

- connection interface bases for 8/12/16-channel discrete inputs/outputs
- bases for connection and adaptation interfaces for inputs with 16 isolated channels
- bases for connection and adaptation interfaces for static outputs with 8 and 16 channels
- bases for connection and adaptation interfaces relating to relay outputs with 8 and 16 channels
- bases for adapter splitting 16 channels into 2 x 8 channels
- bases for connection and adaptation interfaces relating to outputs, with or without removable electromechanical or static relays, with 16 channels
- input bases for 12.5-mm wide static relays

TELEFAST 2 Connection Bases Catalog

At a Glance

The catalog of TELEFAST 2 bases for discrete input/output modules is shown here.

Catalog

The table below shows the catalog of connection interface bases for 8/12/16-channel discrete I/Os.

Reference ABE-7H••	08R10 08R11 08R21	08S21	12R50 16R50	12R10 12R20 12R21	16R10 16R11 16R20 16R21 16R23 16R30 16R31	12S21 16S21	16S43 (1) 16F43 (2)
Base types	Connection in	nterface bases for	8/12/16-channel	discrete I/C	s.		
Sub groups	:		Compact 12 and 16-channel bases	12 and 16-channel bases			
Illustration	TELEFAST 2 base			TELEFAST	7 2 base		
Description	-	with 1 isola- tor/channel	-	-		with 1 isola- tor/channel	with 1 fuse + 1 isola- tor/channel

- (1) for inputs
- (2) for outputs

336 35012474 10/2019

Illustration

The principle for identifying the connection interface bases for 8/12/16-channel discrete I/Os is as follows.

Description

The table below describes the different elements which make it possible to identify the connection interface bases for 8/12/16-channel discrete I/Os.

Number	Description
(1)	08 = 8-channel base12 = 12-channel base16 = 16-channel base
(2)	Primary function: • R = simple connection • S = isolator/channel • F = fuse/channel
(3)	1 = with 1 screw terminal per channel on 1 level 2 = with 2 screw terminals per channel on 2 levels 3 = with 3 screw terminals per channel on 3 levels 4 = with 2 screw terminals per channel on 1 level 5 = with 1 screw terminal per channel on 2 levels
(4)	0 or even number = without LED display per channel odd number = with LED display per channel

Catalog

The table below shows the catalog of bases for connection and adaptation interfaces for inputs with 16 isolated channels.

ABE-7S•• reference	16E2B1	16E2E1	16E2E0	16E2F0	16E2M0
Base types	Bases for connect	ion and adaptation	interfaces for inputs	with 16 isolated cha	nnels.
Illustration	TELEFAST 2 base	A LA			
Description	16 x 24 VDC inputs	16 x 48 VDC inputs	16 x 48 VAC inputs	16 x 110120 VAC inputs	16 x 220240 VAC inputs

The table below shows the catalog of bases for connection and adaptation interfaces for static outputs with 8 and 16 channels.

ABE-7S•• reference	08S2B0	08S2B1	16S2B0	16S2B2
Base types	Bases for connection and adapta	ation interfaces for stati	ic outputs with 8 and 1	6 channels.
Sub groups	8-channel bases		16-channel bases	
Illustration	TELEFAST 2 base	TELEFAST 2 base	THE STANDARD SANDERS	
Description	8 static 24 VDC / 0.5A outputs, with error detection transfer to PLC.	8 static 24 VDC / 2A outputs, with error detection transfer to PLC.	16 static 24 VDC / 0.5A outputs, with error detection transfer to PLC.	16 static 24 VDC / 0.5A outputs, without error detection transfer to PLC.

338 35012474 10/2019

The table below shows the catalog of bases for connection and adaptation interfaces for relay outputs with 8 and 16 channels.

ABE-7R•• reference	08S111	08S210	16S111	16S210	16S212
Base types	Bases for connection a	and adaptation in	terfaces for relay	outputs with 8 and 16	channels.
Sub groups	8-channel bases		16-channel bas	es	
Illustration	TELEFAST 2 base	TELEFAST 2 b	ase	TELEFAST 2 base	THE STATE OF THE S
Description	8 relay outputs, 1 F with + or alternating polarity distribution.	8 relay outputs, 1 F, potential free contact.	16 relay outputs, 1 F, 2 x 8 shared + or alternating.	16 relay outputs, 1 F, potential free contact.	16 relay outputs, 1 F with distribution of the 2 polarities by 8-channel group.

The table below displays the catalog entry showing the connection base for the adapter splitting 16 channels into 2 x 8 channels.

ABE-7A•• reference	CC02	
Base types	Bases for adapter splitting 16 channels into 2 x 8 channels.	
Illustration	TELEFAST 2 base	
Description	Allows splitting of: 16 channels into two x 8 channels 12 channels into 8 channels + 4 channels	

The table below shows the catalog of output adaptation interface bases with or without removable electromechanical or static relays with 16 channels.

ABE-7•• reference	R16T210	P16T210	P16T214	R16T212	P16T212	P16T215	P16T318	
Base types	Output adapt 16 channels	Output adaptation interface bases with or without removable electromechanical or static relays with 16 channels						
Sub groups	Output bases, 1 F, potential free contact.			Output bases, 1 F, distribution of the 2 polarities by 8-channel group.			Output base, 1 F, distribution of the 2 polarities by 4-channel group.	
Illustration	TELEFAST 2	base						
Description	with 10-mm wide electro- mechanical relay	10-mm wide relay not provided	10-mm wide relay not pro- vided, 1 fuse/channel	with 10-mm wide electro- mechanical relay	10-mm wide relay not provided	10-mm wide relay not pro- vided, 1 fuse/channel	12.5-mm wide relay, not provided, 1 fuse + 1 isolator/channel	

The table below shows the catalog of output adaptation interface bases with or without removable electromechanical or static relays with 16 channels (continued).

ABE-7•• reference	R16T230	R16T330	P16T330	P16T334	R16T231	R16T332	P16T332	R16T370
Base types		Output adaptation interface bases with or without removable electromechanical or static relay with 16 channels (continued).						
Sub groups	Output bases, 1 OF, potential free contact.			Output bases, 1 OF, shared by 8-channel group.	distribution of the 2 polarities by 8-channel group.		Output bases, 2 OF, potential free contact.	
Illustration	TELEFAST :	2 base					-	,
	A A A A A A A A A A A A A A A A A A A							
Description	with 10-mm wide electro- mechanical relay	with 12.5-mm wide electro- mechanical relay	12.5-mm wide relay, not provided	12.5-mm wide relay, not provided, 1 fuse/channel	with 10-mm wide electro- mechanical relay	with 12.5-mm wide electro- mechanical relay	12.5-mm wide relay, not provided	with 12.5-mm wide electro- mechani- cal relay

The table below shows the catalog of input bases for 12.5-mm wide static relays.

ABE-7P•• reference	16F310	16F312
Base types	Input bases for 12.5-mm wide static relays	
Illustration	TELEFAST 2 base	
Description	potential free	distribution of the 2 polarities by 8-channel group

Combination of Discrete I/O Modules and TELEFAST 2 Connection Bases

Compatibility Table

The following table summarizes compatibility between Discrete I/O modules and TELEFAST 2 connection bases.

	BMX DDI 3202 K BMX DDM 3202 K	BMX DDI 6402 K	BMX DDO 3202 K BMX DDM 3202 K	BMX DDO 6402 K			
	1 connector	2 connectors	1 connector	2 connectors			
Connection bases							
8 channels	8 channels						
ABE-7H08R••	X (1)	X (1)	X (1)	X (1)			
ABE-7H08S21	X (1)	X (1)	X (1)	X (1)			
12 channels							
ABE-7H12R••	-	-	-	-			
ABE-7H12S21	-	-	-	-			
16 channels							
ABE-7H16R••	X	X	X	X			
ABE-7H16S21	X	X	X	X			
ABE-7H16R23	X	X	-	-			
ABE-7H16F43	-	-	X	X			
ABE-7H16S43	X	X	-	-			
Input adapter connection bases							
16 channels							
ABE-7S16E2••	х	Х	-	-			
ABE-7P16F3••	X	X	-	-			

	BMX DDI 3202 K BMX DDM 3202 K	BMX DDI 6402 K	BMX DDO 3202 K BMX DDM 3202 K	BMX DDO 6402 K	
	1 connector	2 connectors	1 connector	2 connectors	
Output adapter connecti	on bases				
8 channels					
ABE-7S08S2••	-	-	X (1)	X (1)	
ABE-7R08S***	-	-	X (1)	X (1)	
16 channels					
ABE-7R16S***	-	-	X	Х	
ABE-7R16T•••	-	-	Х	Х	
ABE-7P16T•••	-	-	Х	Х	
(1) with 16 to 2 x 8 channel adapter ABE-7ACC02					

X compatible

- non-compatible

Section 30.2

Connection Principles for the TELEFAST 2 Interfaces for Discrete I/O

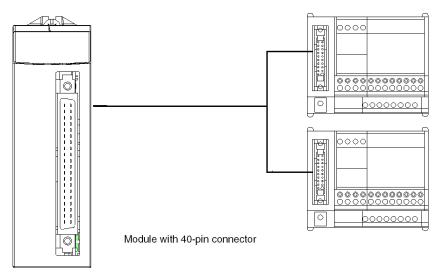
Aim of this section

This section describes the connection principles for the **TELEFAST 2** products for discrete input/output modules.

What Is in This Section?

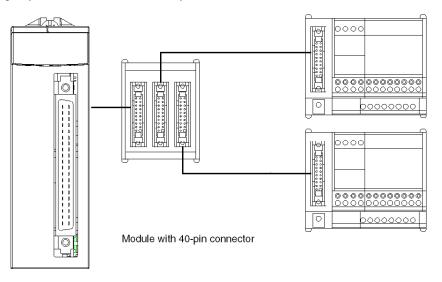
This section contains the following topics:

Topic	Page
Connecting a Discrete Input/Output Module to a TELEFAST 2 Base Interface	346
Dimensions and Mounting of the TELEFAST 2 Connection Bases	348


Connecting a Discrete Input/Output Module to a TELEFAST 2 Base Interface

At a Glance

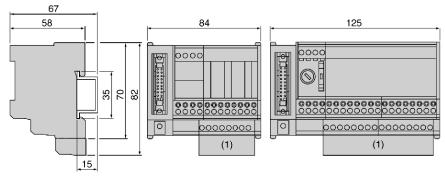
A discrete input/output module with a 40-pin connector can be connected to the TELEFAST 2 connection base with a connection cable (see page 85).


Illustration

The following diagram shows the connection of a discrete input/output module with a 40-pin connector to a **TELEFAST 2** connection base.

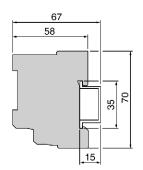
Illustration

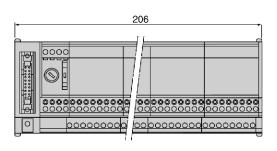
The following diagram shows an example specific to the connection of 16 channels in 2×8 -channel groups via the **ABE-7ACC02** adapter base.

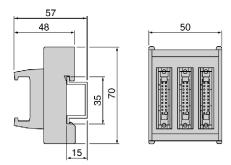

Dimensions and Mounting of the TELEFAST 2 Connection Bases

At a Glance

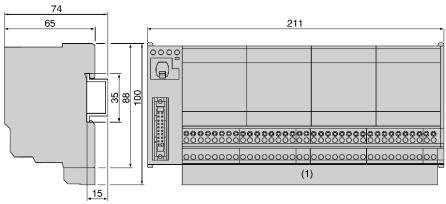
Here is an overview of the dimensions of different TELEFAST 2 connection products and their mounting methods.


Illustration

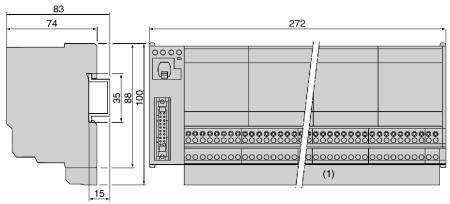

The illustration below shows the dimensions (in mm) of the products: ABE-7H••R1•, ABE-7H••R5•, ABE-7H••R2•, ABE-7H••S21, ABE-7H16R3•, ABE-7S08S2B0, ABE-7R••S1••, ABE-7R08S210.


(1) Dimension with additional shunt terminal block ABE-7BV20 or ABE-7BV10.

The illustration below shows the dimensions (in mm) of the products: ABE-7H16S43, ABE-7S16E2••, ABE-7S08S2B1, ABE-7S16S2B•, ABE-7H16F43•, ABE-7R16S21.



The illustration below shows the dimensions (in mm) of the product ABE-7ACC02.


The illustration below shows the dimensions (in mm) of the products: ABE-7R16T2•• and ABE-7P16T2••.

Reference measuring 211 x 88 mm (product shown has removable relays and non-mounted screws).

(1) Dimension with additional shunt terminal block ABE-7BV20 or ABE-7BV10.

The illustration below shows the dimensions (in mm) of the products: ABE-7R16T3•• and ABE-7P16T3••.

Reference measuring 272 x 88 mm (product shown has removable relays and non-mounted screws).

(1) Dimension with additional shunt terminal block ABE-7BV20 or ABE-7BV10.

Mounting

The TELEFAST 2 bases are mounted on 35-mm wide DIN mounting rails.

A WARNING

UNEXPECTED EQUIPMENT OPERATION

Install the input adaptation bases ABE-7S16E2E1 and static output adaptation bases ABE-7S••S2B• lengthways and horizontally to prevent the device from overheating and unexpected operation.

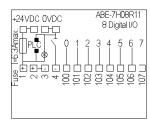
Failure to follow these instructions can result in death, serious injury, or equipment damage.

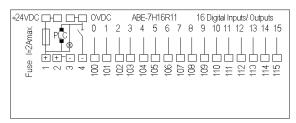
Section 30.3 TELEFAST 2 ABE-7H08R10/08R11 and ABE-7H16R10/16R11 Connection Bases

Sensor and Pre-actuator Connections on the ABE-7H08R10/R11 and ABE-7H16R10/R11 Bases

At a Glance

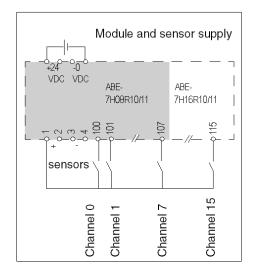
This is an overview of the sensor and pre-actuator connections on TELEFAST 2 bases.

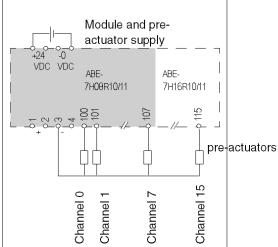

NOTE: The bases are manufactured with a general-purpose, quick-blow fuse rated 6.3 A. To guarantee optimum protection, this fuse should be rated according to the application (connection to input or output functions) and the maximum current allowable in the base.


Type and rating of fuse to be fitted to the base:

- input functions: 0.5 A quick-blow
- output functions:
 - O 2 A guick-blow on the ABE-7H16R base
 - O 6.3 A quick-blow on the ABE-7H08R base

Illustration


Description of the connection terminal blocks.



Illustration

Connections for input and output functions.

Connecting the common for sensors:

• onto terminals 1 or 2: sensors to the '+' of the supply (positive logic inputs)

Connecting the common for pre-actuators:

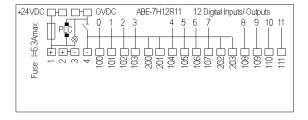
• onto terminals 3 or 4: pre-actuators to the '-' of the supply (positive logic outputs)

Section 30.4 TELEFAST 2 ABE-7H12R10/12R11 Connection Bases

Sensor and Pre-actuator Connections on the ABE-7H12R10/R11 Bases

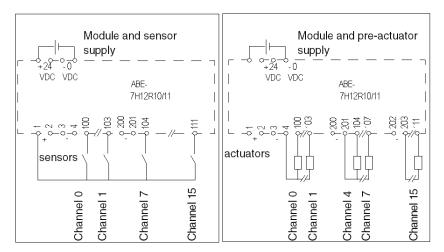
At a Glance

This is an overview of the sensor and pre-actuator connections on TELEFAST 2 bases.


NOTE: The bases are manufactured with a general-purpose, quick-blow fuse rated 6.3 A. To guarantee optimum protection, this fuse should be rated according to the application (connection to input or output functions) and the maximum current allowable in the base.

Type and rating of fuse to be fitted to the base:

- input functions: 0.5 A guick-blow
- output functions: 6.3 A quick-blow on the ABE-7H12R ••base


Illustration

Description of the connection terminal blocks.

Illustration

Connections for input and output functions.

Connecting the common for sensors:

• onto terminals 1 or 2: sensors to the '+' of the supply (positive logic inputs)

Connecting the common for pre-actuators:

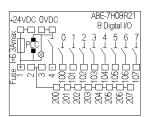
• several terminals linked to the '-' polarity (3, 4, 200, 201, 202, and 203) allowing sharing in groups of 4 or 2 channels (positive logic outputs)

Section 30.5 TELEFAST 2 ABE-7H08R21 and ABE-7H16R20/16R21/16R23 Connection Bases

Sensor and Pre-actuator Connections on the ABE-7H08R21 and ABE-7H16R20/R21/R23 Bases for Type 2 Inputs

At a Glance

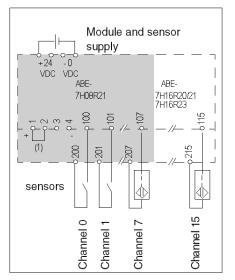
This is an overview of the sensor and pre-actuator connections on TELEFAST 2 bases.

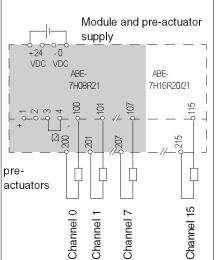

NOTE: The bases are manufactured with a general-purpose, quick-blow fuse rated 2 A. To guarantee optimum protection, this fuse should be rated according to the application (connection to input or output functions) and the maximum current allowable in the base.

Type and rating of fuse to be fitted to the base:

- input functions: 0.5 A quick-blow
- output functions:
 - O 2 A guick-blow on the ABE-7H16R base
 - O 6.3 A quick-blow on the ABE-7H08R •• base

Illustration


Description of the connection terminal blocks.



Illustration

Connections for input and output functions.

Connecting the common for sensors:

 In order to create the shared sensor supply, position the jumper (1) on terminals 1 and 2: terminals 200 to 215 will be on the '+' of the supply (positive logic inputs).

Connecting the common for pre-actuators:

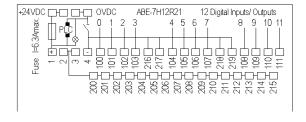
• In order to create the shared supply for the pre-actuators, position the jumper (2) on terminals 3 and 4: terminals 200 to 215 will be on the '-' of the supply (positive logic outputs).

Section 30.6 TELEFAST 2 ABE-7H12R20/12R21 Connection Bases

Sensor and Pre-actuator Connections on the ABE-7H12R20/12R21 Bases

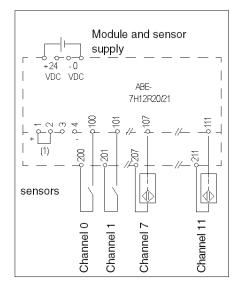
At a Glance

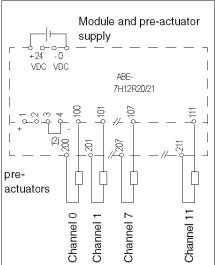
This is an overview of the sensor and pre-actuator connections on TELEFAST 2 bases.


NOTE: The bases are manufactured with a general-purpose, quick-blow fuse rated 6.3 A. To guarantee optimum protection, this fuse should be rated according to the application (connection to input or output functions) and the maximum current allowable in the base.

Type and rating of fuse to be fitted to the base:

- input functions: 0.5 A quick-blow
- output functions: 6.3 A quick-blow on the ABE-7H12R •• base


Illustration


Description of the connection terminal blocks.

Illustration

Connections for input and output functions.

Connecting the common for sensors:

In order to create the shared sensor supply, position the jumper (1) on terminals 1 and 2: terminals 200 to 215 will be on the '+' of the supply (positive logic inputs).
 Terminals 216, 217, 218 and 219 are linked to the '-' polarity.

Connecting the common for pre-actuators:

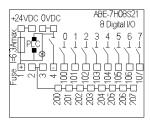
 In order to create the shared supply for the pre-actuators, position the jumper (2) on terminals 3 and 4: terminals 200 to 215 will be on the '-' of the supply (positive logic outputs).
 Terminals 216, 217, 218 and 219 are linked to the '-' polarity

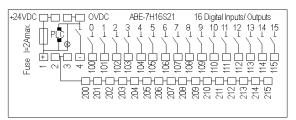
Section 30.7 TELEFAST 2 ABE-7H08S21/16S21 Connection Bases

Sensor and Pre-actuator Connections on ABE-7H08S21/16S21 Bases with One Isolator per Channel

At a Glance

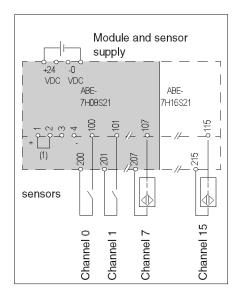
This is an overview of the sensor and pre-actuator connections on TELEFAST 2 bases.

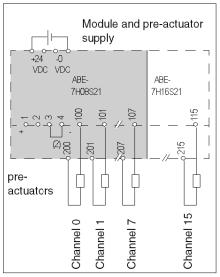

NOTE: The bases are manufactured with a general-purpose, quick-blow fuse rated 2 A. To guarantee optimum protection, this fuse should be rated according to the application (connection to input or output functions) and the maximum current allowable in the base.


Type and rating of fuse to be fitted to the base:

- input functions: 0.5 A guick-blow
- output functions:
 - O 2 A quick-blow on the ABE-7H16S21 base
 - O 6.3 A quick blow on the ABE-7H08S21 base

Illustration


Description of the connection terminal blocks.



Illustration

Connections for input and output functions.

Connecting the common for sensors:

• In order to create the shared sensor supply, position the jumper (1) on terminals 1 and 2: terminals 200 to 215 will be on the '+' of the supply (positive logic inputs).

Connecting the common for actuators:

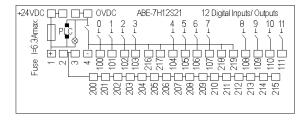
• In order to create the shared supply for the actuators, position the jumper (2) on terminals 3 and 4: terminals 200 to 215 will be on the '-' of the supply (positive logic outputs).

Section 30.8 TELEFAST 2 ABE-7H12S21 Connection Base

Sensor and Pre-actuator Connections on the ABE-7H12S21 Base with 1 Isolator per Channel

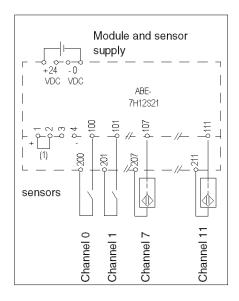
At a Glance

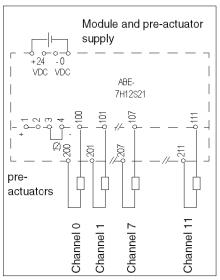
This is an overview of the sensor and actuator connections on the TELEFAST 2 base.


NOTE: The base is manufactured with a general-purpose, quick-blow fuse rated 6.3 A. To guarantee optimum protection, this fuse should be rated according to the application (connection to input or output functions) and the maximum current allowable in the base.

Type and rating of fuse to be fitted to the base:

- input functions: 0.5 A guick-blow
- output functions: 6.3A quick-blow on the ABE-7H12S21 base


Illustration


Description of the connection terminal blocks.

Illustration

Connections for input and output functions.

Connecting the common for sensors:

In order to create the shared sensor supply, position the jumper (1) on terminals 1 and 2: terminals 200 to 215 will be on the '+' of the supply (positive logic inputs).
 Terminals 216, 217, 218 and 219 are linked to the '-' polarity.

Connecting the common for pre-actuators:

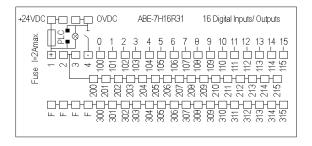
 In order to create the shared supply for the pre-actuators, position the jumper (2) on terminals 3 and 4: terminals 200 to 215 will be on the '-' of the supply (positive logic outputs).
 Terminals 216, 217, 218 and 219 are linked to the '-' polarity.

Section 30.9 TELEFAST 2 ABE-7H16R30/16R31 Connection Bases

Sensor and Pre-actuator Connections on the ABE-7H16R30/R31 Bases

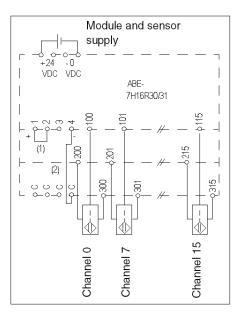
At a Glance

This is an overview of the sensor connections on TELEFAST 2 bases.


NOTE: The bases are manufactured with a general-purpose, quick-blow fuse rated 2 A. To guarantee optimum protection, this fuse should be rated according to the application and the maximum current allowable in the base.

Type and rating of fuse to be fitted to the base:

• input functions: 0.5A quick-blow


Illustration

Description of the connection terminal blocks.

Illustration

Input function connections.

Connecting the common for sensors:

- to create the shared sensor supply:
 - o position the jumper wire (1) on terminals 1 and 2: terminal blocks 200 to 215 will be at the "+" of the supply
 - o link terminal 4 to one of the C terminals of the 3rd level (2): terminal blocks 300 to 315 will be at the "-" of the supply

NOTE: The ABE-7H16R30/R31 base can also be used for connecting actuators.

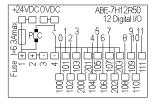
Section 30.10 TELEFAST 2 ABE-7H12R50 Connection Base

Sensor and Pre-actuator Connections on the ABE-7H12R50 Bases

At a Glance

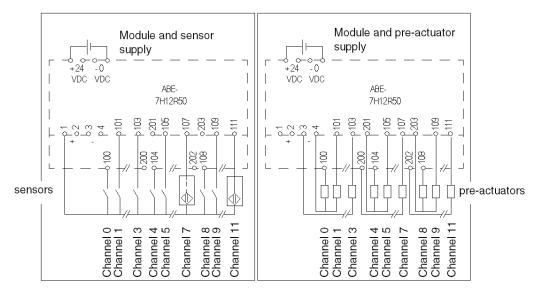
This is an overview of the sensor and pre-actuator connections on the TELEFAST 2 base.

NOTE: The base is manufactured with a general-purpose, quick-blow fuse rated 6.3 A. To guarantee optimum protection, this fuse should be rated according to the application (connection to input or output functions) and the maximum current allowable in the base.


Type and rating of fuse to be fitted to the base:

input functions: 0.5 A quick-blow

• output functions: 6.3 A quick-blow on the ABE-7H12R50 base


Illustration

Description of the connection terminal blocks.

Illustration

Connections for input and output functions.

Connecting the common for sensors:

• onto terminals 1 or 2: sensors to the '+' of the supply (positive logic inputs). Terminals 200, 201, 202 and 203 are linked to the '-' polarity

Connecting the common for pre-actuators:

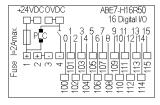
several terminals linked to the '-' polarity (3, 4, 200, 202, and 203) allow sharing in groups of 4
or 2 channels (positive logic outputs)

Section 30.11 TELEFAST 2 ABE-7H16R50 Connection Base

Sensor and Actuator Connections on the ABE-7H16R50 Base

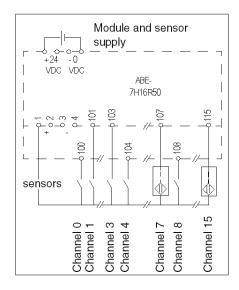
At a Glance

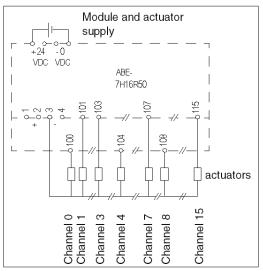
This is an overview of the sensor and actuator connections on the TELEFAST 2 base.


NOTE: The base is manufactured with a general-purpose, fast-blow fuse rated 6.3 A. To guarantee optimum protection, this fuse should be rated according to the application (connection to input or output functions) and the maximum current allowable in the base.

Type and rating of fuse to be fitted to the base:

- input functions: 0.5A fast blow
- output functions: 2A fast blow on the ABE-7H16R50 base


Illustration


Description of the connection terminal blocks.

Illustration

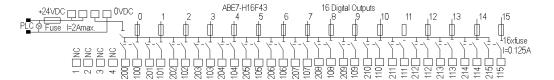
Connections for input and output functions.

Connecting the common for sensors:

• onto terminals 1 or 2: sensors to the '+' of the supply (positive logic inputs) Connecting the common for actuators:

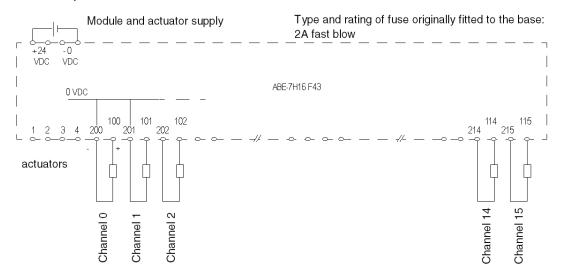
• onto terminals 3 or 4: actuators to the '-' of the supply (positive logic outputs)

Section 30.12 TELEFAST 2 ABE-7H16F43 Connection Base


Actuator Connections on ABE-7H16F43 Output Base with One Fuse and One isolator per Channel

At a Glance

This is an overview of the actuator connections on TELEFAST 2 bases.


Illustration

Description of the connection terminal blocks.

Illustration

Output connection functions.

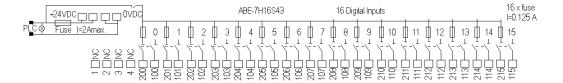
Functionality per channel:

- original fitted 0.125 A fuse
- isolator cuts the '-' and the channel signal simultaneously

NOTE: Terminals 200..215 are connected to the '-' polarity of the supply.

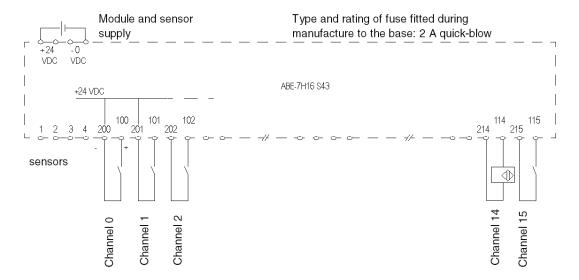
370 35012474 10/2019

Section 30.13 TELEFAST 2 ABE-7H16S43 Connection Base


Sensor Connections on ABE-7H16S43 Output Base with One Fuse and One Isolator per Channel

At a Glance

This is an overview of the sensor connections on TELEFAST 2 bases.


Illustration

Description of the connection terminal blocks.

Illustration

Input function connections.

Functionality per channel:

- 0.125 A fuse fitted during manufacture
- isolator cuts the '+' and the channel signal simultaneously

NOTE: Terminals 200...215 are connected to the '+' polarity of the supply.

372 35012474 10/2019

Section 30.14 TELEFAST 2 Connection Base Accessories

Aim of this Section

This section introduces the TELEFAST 2 connection bases' range of accessories.

What Is in This Section?

This section contains the following topics:

Topic	Page
TELEFAST 2 Connection Base Accessories Catalog	374
Association Table for the Relays on ABE-7R16Txxx, ABE-7P16Txxx and ABE-7P16Fxxx Bases	377
Characteristics of the Removable ABR-7xxx Electromechanical Output Relays	379
Characteristics of the Removable ABS-7Exx Static input Relays	380
Characteristics of the Removable ABS-7Sxx Static Output Relays	381

TELEFAST 2 Connection Base Accessories Catalog

At a Glance

This is an overview of the TELEFAST 2 connection base accessories catalog for discrete I/O modules.

Catalog

The table below shows the TELEFAST 2 connection base accessories catalog.

Product reference	Illustration	Description
Additional shunt ter	rminal block	
ABE-7BV10		Terminal block fitted with 10 screw terminal blocks
ABE-7BV20	painceological parties of the second parties	Terminal block fitted with 20 screw terminal blocks
Adapter base	1	
ABE-7ACC02		Enables the connection of 16 channels in 2 x 8-channel groups
Mounting kit		
ABE-7ACC01		Enables the bases to be mounted on monoblock mounting plates
Sealed cable lead-	through	
ABE-7ACC84		Allows transit through cabinets without cutting the cables
Transit through cab	pinet	
ABE-7ACC83		40-pin connectors for 8/12 channels -> M23 cylindrical connector
ABE-7ACC82		40-pin connectors for 16 channels -> M23 cylindrical connector

374 35012474 10/2019

Product reference	Illustration	Description
ABE-7ACC80		40-pin connectors for 32 channels -> HARTING type connector
ABE-7ACC81		Plug-in connector for ABE-7ACC80
Removable continu	ity module	
ABE-7ACC20		Width 10 mm
ABE-7ACC21		Width 12.5 mm
Customer identifica	tion label marking software	
ABE-7LOGV10	-	-
5 x 20 quick-blow g	lass fuse	
ABE-7FU012		0.125 A
ABE-7FU050		0.5 A
ABE-7FU100		1 A
ABE-7FU200		2 A
ABE-7FU630		6.3 A
Adhesive marker h	older	
AR1-SB3		For AB1-R. / AB1-G type markers

Product reference	Illustration	Description		
Relays for ABE-7R	16T•••, ABE-7P16T••• and ABI	E-7P16F••• bases		
ABR-7S••• (1)	ABE-7S3•• and ABE-7S2••	Output electromechanical relay (4)		
ABS-7S••• (2)		Output static relay (4)		
ABS-7E••• (3)		Input static relay (4)		

- (1) For electrical characteristics, see *Characteristics of the Removable ABR-7xxx Electrome-chanical Output Relays, page 379.*
- (2) For electrical characteristics, see *Characteristics of the Removable ABS-7Sxx Static Output Relays, page 381.*
- (3) For electrical characteristics, see *Characteristics of the Removable ABS-7Exx Static input Relays, page 380.*
- **(4)** Contingency table of relays for bases, see *Association Table for the Relays on ABE-7R16Txxx*, *ABE-7P16Txxx and ABE-7P16Fxxx Bases, page 377*.

376 35012474 10/2019

Association Table for the Relays on ABE-7R16Txxx, ABE-7P16Txxx and ABE-7P16Fxxx Bases

At a Glance

The table for comparison between the TELEFAST 2 **ABE-7R16T•••**, **ABE-7P16T•••** and **ABE-7P16F•••** link bases and the electromagnetic or static relays is described here.

Compatibility Table

The table below shows the association possibilities for the electromagnetic or static relays on the TELEFAST 2 bases.

Bases ABI	E-7••	equipped	with electro	magnetic r	elays	not equipped with relays			
		R16T21•	R16T23•	R16T33•	R16T370	P16T21•	P16T33•	P16T318	P16F31•
Electromag	gnetic relays 1	rom ABR-7••	• output						
10 mm	S21 1F	Х	-	-	-	Х	-	-	-
	S23 1OF	X (1)	Х	-	-	-	-	-	-
12.5 mm	S33 10F	-	-	Х	-	-	Х	Х	-
	S37 2OF	-	-	-	Х	-	-	-	-
Static relay	ys from ABS-S	6 output							
10 mm	C2E	X (1)	-	-	-	Х	-	-	-
	A2M	X (1)	-	-	-	Х	-	-	-
12.5 mm	СЗВА	-	-	X (1)	-	-	X (2)	Х	-
	C3E	-	-	X (1)	-	-	Х	Х	-
	A3M	-	-	X (1)	-	-	Х	Х	-
Static relay	ys from ABS-7	E•• input							
12.5 mm	C3AL	-	-	-	-	-	-	-	Х
	C3B2	-	-	-	-	-	-	-	Х
	C3E2	-	-	-	-	-	-	-	Х
	A3E5	-	-	-	-	-	-	-	Х
	A3F5	-	-	-	-	-	-	-	Х
	A3F6	-	-	-	-	-	-	-	Х
	A3M5	-	-	-	-	-	-	-	Х
	A3M6	-	-	-	-	-	-	-	Х

				elays	not equipped with relays			
		R16T23•	R16T33•	R16T370	P16T21•	P16T33•	P16T318	P16F31•
ABE-7*** continuity block								
CC20	Х	-	-	-	Х	-	-	-
CC21	-	-	Х	-	-	Х	Х	-
(CC20	CC20 X	nuity block	nuity block	nuity block	nuity block CC20 X X	nuity block CC20 X X -	nuity block CC20 X X

X compatible

- not compatible

378 35012474 10/2019

Characteristics of the Removable ABR-7xxx Electromechanical Output Relays

At a Glance

The general characteristics of the removable ABR-7••• electromechanical output relays for TELEFAST 2 bases are described in this section.

General Characteristics

This table shows the general characteristics of the ABR-7 ••• relays.

ABR-7*** reference			S21	S23	S33	S37
Relay width			10 mm		12.5 mm	
Characteristics of the con	tacts					
Composition of the contact	cts		1 F	1 OF		2 OF
Max. operating voltage ad	ccording to IEC 947-5-1	Alternating	250 V		264 V	
		Direct	125 V	125 V		
Thermal current			4 A		5 A	
Frequency of current use		50/60 Hz				
Alternating current load	Resistive, load AC12	Voltage	230 VAC			
		Current	1.5 A	1.2 A	3 A	2.5 A
	Inductive load AC15	Voltage	230 VAC			
		Current	0.9 A	0.7 A	1.7 A	1.3 A
Direct current load	Resistive, load DC12	Voltage	24 VDC			
		Current	1.5 A	1.2 A	3 A	2.5 A
	Inductive load DC13,	Voltage	24 VDC			
	L/R = 10 ms	Current	0.6 A	0.45 A	1.4 A	1 A
Minimum switching		Current	10 mA		100 mA	
1		Voltage	5 V			
Response time		State 0 to 1	10 ms		13 ms	15 ms
		State 1 to 0	5 ms		13 ms	20 ms
Maximum speed of function	on loading	*	0.5 Hz			
Voltage assigned insulation	on	Coil/contact	300 V			
Voltage assigned shock r	esistance (1.2/50)	Coil/contact	2.5 kV			

(1) for 0.5 x 10⁶ maneuvers

Characteristics of the Removable ABS-7Exx Static input Relays

At a Glance

The general characteristics of the removable ABS-7E•• static input relays for TELEFAST 2 bases are described in this section.

General Characteristics

This table shows the general characteristics of the ABS-7E•• relays.

ABS-7E•• reference		C3AL	C3B2	C3E2	A3E5	A3F5	A3M5	
Relay width		12.5 mm						
Command characteristics								
Assigned operating voltage	Direct	5 V	24 V	48 V	-			
(Us)	Alternating	-			48 V	110130 V	230240 V	
Max. operating voltage (incl	6 V	30 V	60 V	53 V	143 V	264 V		
Max. current at Us		13.6 mA	15 mA		12 mA	8.3 mA	8 mA	
State 1 guaranteed	Voltage	3.75 V	11 V	30 V	32 V	79 V	164 V	
	Current	4.5 mA	6 mA		5 mA		4.5 mA	
State 0 guaranteed	Voltage	2 V	5 V	10 V		30 V	40 V	
	Current	0.09 mA	2 mA	•	1.5 mA	2 mA		
Maximum switching frequent report 50%)	cy (cyclic	1000 Hz			25 Hz			
Complies with IEC1131-2		-	Type 2		Type 1			
Response time	State 0 to 1	0.05 ms			20 ms			
	State 1 to 0	0.4 ms			20 ms			
Voltage assigned to insulation	Input/output	300 V						
Voltage assigned to shock resistance (1.2/50)	Input/output	2.5 kV						

Characteristics of the Removable ABS-7Sxx Static Output Relays

At a Glance

The general characteristics of the removable ABS-7S•• static output relays for TELEFAST 2 bases are described in this section.

General Characteristics

This table shows the general characteristics of the ABS-7S•• relays.

ABS-7S•• refer	ence		C2E	A2M	СЗВА	C3E	A3M
Relay width			10 mm 12.5 mm				
Output circuit c	haracteristics						
Voltage assign	Voltage assigned to job Direct		548 V	-	24 V	548 V	-
Alterna		Alternating	-	24240 V	-		24240 V
Max. voltage			57.6 VDC	264 VAC	30 VDC	60 VDC	264 VAC
Alternating current load	Resistive, load AC12	Current	-	0.5 A	-		2 A
Direct current load	Resistive, load DC12	Current	0.5 A	-	2 A	1.5 A	-
	Inductive load DC13	Current	-	-		0.3 A	-
	Filament lamp load DC6		-			10 W	-
Leakage currer	nt at state 0		<= 0.5 mA	<= 2 mA	<= 0.3 mA	<= 0.3 mA	
Breakdown vol	tage at state 1		<= 1 V	<= 1.1 V	<= 0.3 V	<= 1.3 V	
Minimum curre	nt through chann	el	1 mA	10 mA	1 mA		10 mA
Response time		State 0 to 1	0.1 ms	10 ms	0.1 ms		10 ms
		State 1 to 0	0.6 ms	10 ms	0.02 ms	0.6 ms	10 ms
Switching frequ	ency on inductive	e load	-		< 0.5 LI ²	-	
Voltage assigne	ed to insulation	Input/output	300 V				
Voltage assigneresistance (1.2		Input/output	2.5 kV				

382 35012474 10/2019

Part II

Discrete Input/Output Modules Software Implementation

Subject of this Part

This part describes the application-specific discrete functions for Modicon Mx80 PLCs and describes their implementation with the Control Expert software.

What Is in This Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
31	General Introduction to the Application-Specific Discrete Function	385
32	Configuration	387
33	Application-Specific Discrete Module Language Objects	403
34	Debugging	423
35	Diagnostics of the Modules	431

Chapter 31

General Introduction to the Application-Specific Discrete Function

Overview

Introduction

The software installation of the application-specific modules is carried out from various Control Expert editors in both online and offline modes.

If you do not have a processor to connect to, Control Expert allows you to carry out an initial test using the simulator. In this case there are differences in the installation (see page 386).

The following order of installation phases is recommended but it is possible to change the order of certain phases (for example, starting with the configuration phase).

Installation Phases with Processor

The following table shows the various phases of installation with the processor.

Phase	Description	Mode			
Declaration of variables	Declaration of IODDT-type variables for the application-specific modules and variables of the project	Offline / Online			
Programming	Project programming	Offline / Online			
Configuration	Declaration of modules	Offline			
	Module channel configuration				
	Entry of configuration parameters				
Association	Association of IODDTs with the channels configured (variable editor)	Offline / Online			
Generation	Project generation (analysis and editing of links)	Offline			
Transfer	Transfer project to PLC	Online			
Adjustment	Project debugging from debug screens, animation tables				
Debugging	Modifying the program and adjustment parameters				
Documentation	Building documentation file and printing miscellaneous information relating to the project	Offline / Online			
Operation/Diagnostic	Displaying miscellaneous information necessary for supervisory control of the project	Online			
	Diagnostic of project and modules				

Implementation Phases with Simulator

The following table shows the various phases of installation with the simulator.

Phase	Description	Mode			
Declaration of variables	Declaration of IODDT-type variables for the application-specific modules and variables of the project	Offline / Online			
Programming	Project programming	Offline / Online			
Configuration	Declaration of modules	Offline			
	Module channel configuration				
	Entry of configuration parameters				
Association	Association of IODDTs with the modules configured (variable editor)	Offline / Online			
Generation	Project generation (analysis and editing of links)	Offline			
Transfer	Transfer project to simulator	Online			
Simulation	Program simulation without inputs/outputs	Online			
Adjustment	Project debugging from debug screens, animation tables	Online			
Debugging	Modifying the program and adjustment parameters				

Note: The simulator is only used for the discrete or analog modules.

Chapter 32

Configuration

Subject of this Section

This section describes the configuration of application-specific discrete modules for implementation.

What Is in This Chapter?

This chapter contains the following sections:

Section	Topic	Page
32.1	Configuration of a Discrete Module: General Points	388
32.2	Discrete Input and Output Channel Parameters	394
32.3	Configuration of Discrete Module Parameters	398

Section 32.1

Configuration of a Discrete Module: General Points

Subject of this Section

This section describes the basic operations required to configure a Modicon X80 discrete module.

What Is in This Section?

This section contains the following topics:

Topic	Page
Discrete Module Configuration Screen in Modicon Mx80 local rack	389
Discrete Module Configuration Screen in X80 Drop	392

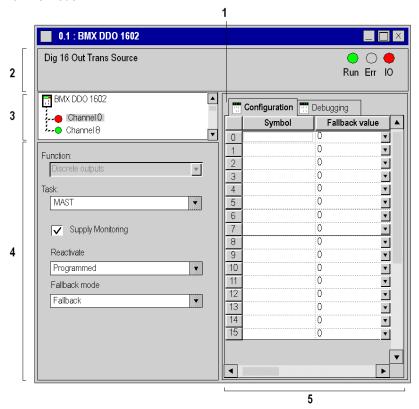
388 35012474 10/2019

Discrete Module Configuration Screen in Modicon Mx80 local rack

At a Glance

The configuration screen is a graphic tool designed for configuring a module selected in a rack. It displays the parameters defined for this module's channels, and enables their modification in offline mode and on-line mode.

It also provides access to the debug screen (in on-line mode only).


NOTE: It is not possible to configure a module by programming using direct language objects %KW (see page 416); these words are accessible in read only format.

NOTE: With module firmware 2.4 or later, you can access the modules either via topological or State RAM addresses.

Please refer to *Memory Tab* (see EcoStruxure[™] Control Expert, Operating Modes) and Topological/State RAM Addressing of Modicon X80 Discrete Modules (see page 437).

Illustration

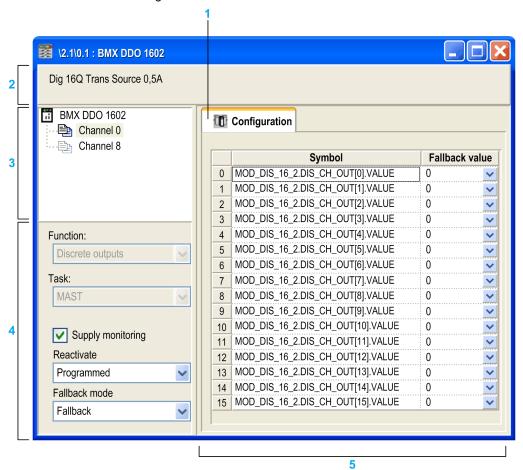
This screen enables the display and modification of parameters in offline mode, as well as debug in online mode.

Description

The next table shows the various elements of the configuration screen and their functions.

Address	Element	Function			
1	Tabs	The tab in the foreground indicates the mode in progress (Configuration in this example). Every mode can be selected using the respective tab. The Debug mode is only accessible in online mode.			
2	Module area	Specifies the abbreviated heading of the module. In online mode, this area also includes the three LEDs: Run , Err and IO .			
3	Channel area	Allows you: ■ by clicking on the reference number, to display the tabs: □ Description which gives the characteristics of the device □ I/O Objects, (see EcoStruxure™ Control Expert, Operating Modes) which is used to pre-symbolize the input/output objects □ Fault which shows the device status (in on-line mode)			
		 to select a channel to display the Symbol, name of the channel defined by the user (using the variable editor) 			
4	General parameters area	Allows you to select the associated function and task in groups of 8 channels: • Function: defines the configuration/de-configuration of the channel group selected (other than groups 0 to 7) • Task: defines the task (MAST, FAST) in which channel default exchange objects will be exchanged			
		The check box Supply monitoring defines the active or inactive state of the external power supply monitoring (available only on some discrete modules). The Reset and Fallback mode drop-down menus enable you to configure the output reset and output fallback mode (available only on some discrete modules).			
5	Configuration zone	Enables the configuration of parameters for the various channels. This field includes various items, displayed according to the selected discrete module. The Symbol column displays the symbol associated with the channel when it has been defined by the user (using the variable editor).			

Discrete Module Configuration Screen in X80 Drop


At a Glance

The various available screens for the discrete modules are:

- Configuration screen
- Type

Illustration

This screen shows the configuration screen:

Description

This table shows the various elements of the configuration screen and their functions.

Address	Element	Function				
1	Tabs	The tab in the foreground indicates the mode in progress (Configuration in this example). Every mode can be selected using the respective tab: • Overview • Configuration • Device DDT which gives the Device DDT (see page 418) name and type of the device				
2	Module area	Specifies the abbreviated heading of the module.				
3	Channel area	Allows you: ■ by clicking on the reference number, to display the tabs: □ Description which gives the characteristics of the device				
		 to select a channel to display the Symbol, name of the channel defined by the user (using the variable editor) 				
		NOTE: All channel are activated and a channel cannot be de-activated to None .				
4	General parameters area	 Allows you to select the associated function and task in groups of 8 channels: Function: defines the configuration/de-configuration of the channel group selected (other than groups 0 to 7) Task: defines the (MAST) task in which channel default exchange objects are exchanged 				
		The check box Supply monitoring defines the active or inactive state of the external power supply monitoring for the 16-channel group selected (available only on 16, 32 and 64 channel discrete modules). In a user application the <code>WRITE_CMD(in a X80 drop)</code> or the <code>WRITE_CMD_QX(in an EIO drop)</code> can also defines the active or inactive state of the external power supply monitoring and overrides the Supply monitoring setting. <code>WRITE_CMD_QXonly</code> works over the first 8 channels (07, 1623, 3239 and 4855) of the 16 channel groups, but affects all 16 channels of the group. <code>WRITE_CMDworks</code> over any of the 16 channels of a channel group and affects all 16 channels of the group. <code>WRITE_CMDworks</code> over any of the 16 channels of a channel group and affects all 16 channels of the group. <code>WRITE_CMDalso</code> allows reactivation of tripped outputs. The Reactivate and Fallback mode drop-down menus enable you to configure the output reset and output fallback mode (available only on some discrete modules).				
5	Configuration zone	Enables the configuration of parameters for the various channels. This field includes various items, displayed according to the selected discrete module. The Symbol column displays the symbol associated with the channel when it has been defined by the user (using the variable editor).				

Section 32.2

Discrete Input and Output Channel Parameters

Subject of this Section

This section presents the various parameters of input and output channels for discrete modules.

What Is in This Section?

This section contains the following topics:

Topic	Page
Discrete Input Parameters on the Rack	395
Discrete Output Parameters for 8-Channel Modules in Rack	396

Discrete Input Parameters on the Rack

At a Glance

The discrete input module includes different parameters per channel. The channels are divided into blocks of 8 or 16 consecutive channels.

Parameters

The following table displays the parameters available for each in-rack discrete input module.

Reference Module	Number of inputs	Associated task (8-channel group)	Function (8-channel group)	Supply monitoring (16-channel group)	Wiring Check (Input by input)
BMX DDI 1602	16	Mast / Fast	Discrete inputs / None	Active / Inactive	-
BMX DDI 1604	16	Mast / Fast	Discrete inputs / None	•	
BMX DAI 0805	8	Mast / Fast	Discrete inputs	Active / Inactive	_
BMX DAI 0814	8	Mast / Fast	Discrete inputs	_	_
BMX DAI 1604	16	Mast / Fast	Discrete inputs / None	Active / Inactive	-
BMX DDI 3202 K	32	Mast / Fast	Discrete inputs / None	Active / Inactive	-
BMX DDI 6402 K	64	Mast / Fast	Discrete inputs / None	Active / Inactive	-
BMX DDM 16022	8 (inputs)	Mast / Fast	Discrete inputs	Active / Inactive	_
BMX DDM 16025	8 (inputs)	Mast / Fast	Discrete inputs	Active / Inactive	_
BMX DDM 3202 K	16 (inputs)	Mast / Fast	Discrete inputs / None	Active / Inactive	-
BMX DDI 1603	16	Mast / Fast	Discrete input / None	Active/ Inactive	-
BMX DAI 1602	16	Mast / Fast	Discrete / None	Active / Inactive	_
BMX DAI 1603	16	Mast / Fast	Discrete / None	Active / Inactive	_
BMX DAI 1614	16	Mast / Fast	Discrete inputs / None	Inactive / Active	Inactive / Active
BMX DAI 1615	16	Mast / Fast	Discrete inputs / None	Inactive / Active	Inactive / Active

NOTE: Parameters indicated in bold characters are part of the default configuration.

NOTE: The BMX DDM 16022 and BMX DDM 16025 discrete mixed input/output modules have 2 groups of 8 channels. The input group is represented by channels 0 to 7 and the output group is represented by channels 16 to 23.

Discrete Output Parameters for 8-Channel Modules in Rack

At a Glance

The discrete output modules include several parameters per channel. The channels are divided into blocks of 8 or 16 consecutive channels.

Parameters

The following table displays the parameters available for each of the discrete output module.

		8-channel group				16-channel group	Channel by channel
Reference Module	Number of outputs	Reset	Associated task	Fallback mode	Function	Supply monitoring	Fallback value
BMX DAO 1605	16	Programmed/ Automatic	Mast / Fast	Fallback/ Maintain	Discrete output / None	Active / Inactive	0 / 1
BMX DAO 1615	16	Programmed/ Automatic	Mast / Fast	Fallback/ Maintain	Discrete output / None	Active / Inactive	0 / 1
BMX DDM 16022	8 (outputs)	Programmed / Automatic	Mast / Fast	Fallback / Maintain	Discrete outputs / None	Active / Inactive	0/1
BMX DDM 16025	8 (outputs)	-	Mast / Fast	Fallback / Maintain	Discrete outputs / None	Active / Inactive	0/1
BMX DDM 3202 K	16 (outputs)	Programmed / Automatic	Mast / Fast	Fallback / Maintain	Discrete outputs / None	Active / Inactive	0/1
BMX DDO 1602	16	Programmed / Automatic	Mast / Fast	Fallback / Maintain	Discrete outputs / None	Active / Inactive	0/1
BMX DDO 1612	16	Programmed/ Automatic	Mast / Fast	Fallback/ Maintain	Discrete output / None	Active / Inactive	0 / 1
BMX DDO 3202 K	32	Programmed / Automatic	Mast / Fast	Fallback / Maintain	Discrete outputs / None	Active / Inactive	0 / 1
BMX DDO 6402 K	64	Programmed / Automatic	Mast / Fast	Fallback / Maintain	Discrete outputs / None	Active / Inactive	0 / 1
BMX DRA 0804T	8	-	Mast / Fast	Fallback / Maintain	Discrete outputs	-	0/1

		8-channel group			16-channel group	Channel by channel	
Reference Module	Number of outputs	Reset	Associated task	Fallback mode	Function	Supply monitoring	Fallback value
BMX DRA 0805	8	-	Mast / Fast	Fallback / Maintain	Discrete outputs	-	0 / 1
BMX DRA 0815	8	-	Mast / Fast	Fallback / Maintain	Discrete outputs	-	0 / 1
BMX DRA 1605	16	-	Mast / Fast	Fallback / Maintain	Discrete outputs / None	-	0 / 1
BMX DRC 0805	8	-	Mast / Fast	Fallback / Maintain	Discrete outputs	-	0 / 1

NOTE: The parameters in bold correspond to the parameters configured by default.

NOTE: The BMX DDM 16022 and BMX DDM 16025 discrete mixed input/output modules have 2 groups of 8 channels. The input group is represented by channels 0 to 7 and the output group is represented by channels 16 to 23.

Section 32.3

Configuration of Discrete Module Parameters

Subject of this Section

This section presents general rules for implementing various configuration parameters for discrete input/output channels.

What Is in This Section?

This section contains the following topics:

Topic	Page
How to Modify the Task Parameter	399
How to Modify the External Power Supply Error Monitoring Parameter	400
How to Modify the Fallback Mode Parameter	401
How to Modify the Output Reset Parameter	402

35012474 10/2019

How to Modify the Task Parameter

At a Glance

This parameter defines the processor task where input acquisitions and output updates are performed.

The task is defined for 8 consecutive channels in the case of on-rack discrete modules.

The possible choices are as follows:

- MAST task
- FAST task

NOTE: Modifying the Task parameter is only possible in off-line mode.

Procedure

The following table shows how to define the type of task assigned to module channels.

Step	Action
1	Open the desired module configuration screen.
2	Click on the Task button of the drop-down menu to assign a task to the group you wish. Result : The following list appears.
3	Choose the desired task.
4	Confirm the modification with the Edit → Validate menu command.

How to Modify the External Power Supply Error Monitoring Parameter

At a Glance

This parameter defines the status (activation or deactivation) of external power supply error monitoring.

It runs in groups of 16 consecutive channels.

Monitoring is active by default (box checked).

Procedure

The following table shows how to disable or enable the external power supply monitoring function.

Step	Action
1	Open the desired module configuration screen.
2	Check the Supply monitor box in the General Parameters area. Result : The I/O editor window appears. Click OK .
3	Validate the change by clicking Edit → Validate .

How to Modify the Fallback Mode Parameter

At a Glance

This parameter defines the fallback mode adopted by outputs when the PLC switches to **STOP** due to:

- a processor error
- a rack connection error
- an inter-rack cable connection error
- a STOP command in Control Expert.

The modes are as follows:

Mode	Meaning
Fallback	Channels are set to 0 or 1 according to the defined fallback value for the corresponding 8-channel group.
Maintenance	The outputs remain in the status they were in before switching to Stop .

Procedure

The following table shows the procedure for defining the fallback mode to be assigned to a channel group.

Step	Action
1	Open the desired module configuration screen.
2	For the desired channel group, click on the arrow of the Fallback mode drop-down menu. Result : The following list appears. Fallback mode Fallback wode Fallback wode Maintenance
3	Select the desired fallback mode.
4	For Fallback mode, configure each channel of the selected group. To do this, click on the drop-down menu arrow of the channel to be configured, located in the Fall Back Value column.
5	Click on the desired value (0 or 1).
6	Confirm the modification with the Edit → Validate menu command.

How to Modify the Output Reset Parameter

At a Glance

This parameter defines the reactivation mode of disconnected outputs.

The modes are as follows.

Mode	Meaning
Programmed	Reactivation is executed with a command from the PLC application or through the appropriate debug screen. Remark: In order to avoid repeated reactivations, the module ensures an automatic 10s delay between two resets.
Automatic	The reactivation is executed automatically every 10s until the error disappears.

The reactivation mode is defined for 8-channel groups.

Procedure

The following table shows the procedure for defining the module output channel reset mode.

Step	Action
1	Open the desired module configuration screen.
2	For the desired channel group, click on the arrow of the Reactivate drop-down menu. Result: The following list appears. Reactivate Programmed Automatic
3	Select the required reactivation mode.
4	Validate the modification by clicking Edit → Confirm .

Chapter 33

Application-Specific Discrete Module Language Objects

Subject of this Section

This chapter describes the language objects associated with application-specific discrete modules from various IODDT.

What Is in This Chapter?

This chapter contains the following sections:

Section	Topic	Page
33.1	Language Objects and IODDT	404
33.2	Discrete Module IODDTs and Device DDTs	405

Section 33.1 Language Objects and IODDT

Description of the Discrete Function Objects Languages

General Points

Discrete modules have different associated IODDTs.

The IODDTs are predefined by the manufacturer. They contain input/output languages objects belonging to a channel of a specific application module.

There are 4 IODDT types for the discrete modules:

- T DIS IN GEN
- T DIS IN STD
- T DIS OUT GEN
- T DIS OUT STD

NOTE: IODDT variables may be created in two ways:

- using the I/O objects (see EcoStruxure ™ Control Expert, Operating Modes) tab
- using the Data Editor

Language Object Types

Each IODDT contains a group of language objects which are used to control them and check their operation.

There are two types of language objects:

- Implicit Exchange Objects, which are automatically exchanged at each cycle pass of the task associated to the module
- Explicit Exchange Objects, which are exchanged upon demand from the application, while using explicit exchange instructions

Implicit exchanges concern the module inputs/outputs: measurement, information, and operation results.

Explicit exchanges enable module configuration and diagnosis.

NOTE: In order to avoid several simultaneous explicit exchanges for the same channel, it is necessary to test the value of the word EXCH_STS of the IODDT associated to the channel before to call EF using this channel.

35012474 10/2019

Section 33.2

Discrete Module IODDTs and Device DDTs

Subject of this Section

This section presents the different IODDT languages objects related to discrete input/output modules and the Device DDTs.

What Is in This Section?

This section contains the following topics:

Topic	Page
IODDT Links	406
Details About T_DIS_IN_GEN Type IODDT Implicit Object Exchange	407
Details About T_DIS_IN_STD Type IODDT Implicit Object Exchange	408
Details About T_DIS_IN_STD Type IODDT Explicit Object Exchange	409
Details About T_DIS_OUT_GEN Type IODDT Implicit Object Exchange	411
Details About T_DIS_OUT_STD Type IODDT Implicit Object Exchange	412
Details About T_DIS_OUT_STD Type IODDT Explicit Object Exchange	413
Details of the Language Objects of the IODDT of Type T_GEN_MOD	415
Modicon X80 Discrete I/O Module Configuration Constants	416
Discrete Device DDT Names	418
MOD_FLT Byte Description	422

IODDT Links

IODDT Link Table

This table describes the IODDT linked to each discrete input/output module:

Module Reference	IODDTs linked to discrete module				
	T_DIS_IN_GEN	T_DIS_IN_STD	T_DIS_OUT_GEN	T_DIS_OUT_STD	
BMX DDI 1602	х	х	-	-	
BMX DDI 1603	х	х	-	-	
BMX DDI 1604T	х	х	-	-	
BMX DDI 3202 K	х	х	-	-	
BMX DDI 6402 K	х	х	-	-	
BMX DAI 1602	х	х	-	-	
BMX DAI 1603	х	х	-	-	
BMX DAI 1604	х	х	-	-	
BMX DAI 1614	х	х	-	-	
BMX DAI 1615	х	х	-	-	
BMX DAI 0805	х	х	-	-	
BMX DAI 0814	х	х	-	-	
BMX DDO 1602	-	-	х	х	
BMX DDO 1612	-	-	х	х	
BMX DDO 3202 K	-	-	x	х	
BMX DDO 6402 K	-	-	x	х	
BMX DRA 0804T	-	-	x	х	
BMX DRA 0805	-	-	x	х	
BMX DRA 0815	-	-	x	х	
BMX DRA 1605	-	-	x	х	
BMX DRC 0805	-	-	x	х	
BMX DAO 1605	-	-	x	х	
BMX DAO 1615	-	-	x	х	
BMX DDM 16022	x	x	x	x	
BMX DDM 16025	х	х	х	х	
BMX DDM 3202 K	х	х	х	х	
X: Linked -: Not linked					

Details About T_DIS_IN_GEN Type IODDT Implicit Object Exchange

At a glance

This section describes ${\tt T_DIS_IN_GEN}$ type IODDT Implicit Object Exchange that applies to all discrete input modules.

Input Flag

The following table presents the VALUE (%Ir.m.c) bit meaning.

Standard symbol	Туре	Access	Meaning	Address
VALUE	EBOOL	R	Indicates that the status of the sensor controlling	%lr.m.c
			the input channel c .	

Error Bit

The following table presents the CH_ERROR (%Ir.m.c.ERR) bit meaning.

Standard symbol	Туре	Access	Meaning	Address
CH_ERROR	BOOL	R	Indicates that c input channel is in error.	%Ir.m.c.ERR

Details About T_DIS_IN_STD Type IODDT Implicit Object Exchange

At a Glance

This section presents IODDT implicit exchange objects of the ${\tt T_DIS_IN_STD}$ -type applicable to discrete input modules.

Input Flag

The following table shows the VALUE (%Ir.m.c) bit meaning.

Standard symbol	Туре	Access	Meaning	Address
VALUE	EBOOL	R	Indicates that the status of the sensor controlling the input channel c .	%lr.m.c

Error Bit

The following table presents the CH ERROR (%Ir.m.c.ERR) bit meaning.

Standard symbol	Туре	Access	Meaning	Address
CH_ERROR	BOOL	R	Indicates that c input channel is in error.	%Ir.m.c.ERR

Details About T_DIS_IN_STD Type IODDT Explicit Object Exchange

At a Glance

This section presents IODDT explicit exchange objects of the <code>T_DIS_IN_STD</code> type applicable to discrete input modules. This section includes the word type objects whose bits have a specific meaning. These objects are explained in detail below.

Example of a declaration of a variable:

IODDT VAR1 of type T DIS INT STD

NOTE: In general, the meaning of the bits is given for bit status 1. In specific cases an explanation is given for each status of the bit.

NOTE: Not all bits are used.

Execution Indicators for an Explicit Exchange: EXCH_STS

The following table shows exchange control bit meanings for channel EXCH_STS (%MWr.m.c.0).

Standard symbol	Туре	Access	Meaning	Address
STS_IN_PROGR	BOOL	R	Read channel status words in progress	%MWr.m.c.0.0
CMD_IN_PROGR	BOOL	R	Command parameter exchange in progress	%MWr.m.c.0.1

Explicit Exchange Report: EXCH_RPT

The table below presents the meaning of the EXCH RPT exchange report bits (%MWr.m.c.1).

Standard symbol	Туре	Access	Meaning	Address
STS_ERR	BOOL	R	Error in reading status words of the channel (1 = error)	%MWr.m.c.1.0
CMD_ERR	BOOL	R	Error during a command parameter exchange (1 = error)	%MWr.m.c.1.1

Standard Channel Status: CH_FLT

The table below shows the meaning of the bits of the status word CH_FLT (%MWr.m.c.2). Reading is performed by a READ STS (IODDT VAR1).

Standard symbol	Туре	Access	Meaning	Number	
TRIP	BOOL	R	External event: Tripped	%MWr.m.c.2.0	
FUSE	BOOL	R	External event: Fuse	%MWr.m.c.2.1	
BLK	BOOL	R	Terminal block incorrectly wired	%MWr.m.c.2.2	
EXT_PS_FLT	BOOL	R	External supply event	%MWr.m.c.2.3	
INTERNAL_FLT	BOOL	R	Internal event module inoperative	%MWr.m.c.2.4	
CONF_FLT	BOOL	R	Hardware or software configuration error	%MWr.m.c.2.5	
COM_FLT	BOOL	R	Communication interruption	%MWr.m.c.2.6	
SHORT_CIRCUIT	BOOL	R	External event: Short-circuit on a channel	%MWr.m.c.2.8	
LINE_FLT	BOOL	R	Open wire detection ⁽¹⁾	%MWr.m.c.2.9	
(1) Only for BMX DAI 1614 and BMX DAI 1615 modules					

Status Word: CH_CMD

The table below shows the CH_CMD (%MWr.m.c.3) status word bit meanings. The command is made by a WRITE CMD (IODDT VAR1).

Standard symbol	Туре	Access	Meaning	Number
PS_CTRL_DIS	BOOL	R/W	Disable control of the external supply.	%MWr.m.c.3.1
PS_CTRL_EN	BOOL	R/W	Enable control of the external supply.	%MWr.m.c.3.2

NOTE: The control of the external power supply is managed to enable or disable a group of 16-channels from the PLC application and through a WRITE_CMD instruction addressing the 1st channel of 16-channel group (that is, channel 0, 16, 32, 46). However this command does not work with the last eight channels of the 16-channel groups (that is, channels 8..15, 24..31, 40..47, 56..63).

Details About T_DIS_OUT_GEN Type IODDT Implicit Object Exchange

At a Glance

This section presents ${\tt T_DIS_OUT_GEN}$ type IODDT Implicit Object Exchange that applies to discrete output modules.

Output Flag

The following table presents the VALUE (%Qr.m.c) bit meaning.

Standard symbol	Туре	Access	Meaning	Number
VALUE	EBOOL	R/W	Indicates the status of the c output channel	%Qr.m.c

Error Bit

The following table presents the CH ERROR (%Ir.m.c.ERR) bit meaning.

Standard symbol	Туре	Access	Meaning	Number
CH_ERROR	BOOL	R	Indicates that c output channel is in error	%Ir.m.c.ERR

Details About T_DIS_OUT_STD Type IODDT Implicit Object Exchange

At a Glance

This section presents $\texttt{T_DIS_OUT_STD}$ type IODDT Implicit Object Exchange that applies to discrete output modules.

Output Flag

The following table presents the VALUE (%Qr.m.c) bit meanings.

Standard symbol	Туре	Access	Meaning	Number
VALUE	EBOOL	R/W	Indicates the status of the c output channel	%Qr.m.c

Error Bit

The following table presents the CH ERROR (%Ir.m.c.ERR) bit meaning.

Standard symbol	Туре	Access	Meaning	Number
CH_ERROR	BOOL	R	Indicates that c input channel is in error	%Ir.m.c.ERR

Details About T_DIS_OUT_STD Type IODDT Explicit Object Exchange

At a Glance

This section presents $\texttt{T_DIS_OUT_STD}$ type IODDT Explicit Object Exchange that applies to discrete output modules. It includes the word type objects whose bits have a specific meaning. These objects are explained in detail below.

Example of a declaration of a variable:

IODDT VAR1 of the T DIS OUT STD type

NOTE: In general, the meaning of the bits is given for bit status 1. In specific cases an explanation is given for each status of the bit.

NOTE: Not all bits are used.

Execution Indicators for an Explicit Exchange: EXCH_STS

The table below shows the meanings of channel exchange control bits from channel EXCH_STS (%MWr.m.c.0).

Standard symbol	Туре	Access	Meaning	Address
STS_IN_PROGR	BOOL	R	Read channel status words in progress	%MWr.m.c.0.0
CMD_IN_PROGR	BOOL	R	Command parameter exchange in progress	%MWr.m.c.0.1

Explicit Exchange Report: EXCH_RPT

The table below presents the meaning of the EXCH_RPT exchange report bits (%MWr.m.c.1).

Standard symbol	Туре	Access	Meaning	Address
STS_ERR	BOOL	R	Error in reading status words of the channel (1 = error)	%MWr.m.c.1.0
CMD_ERR	BOOL	R	Error during a command parameter exchange (1 = error)	%MWr.m.c.1.1

Standard Channel Status: CH_FLT

The table below shows the meaning of the bits of the status word CH_FLT (%MWr.m.c.2). Reading is performed by a READ STS (IODDT VAR1).

Standard symbol	Туре	Access	Meaning	Number
TRIP	BOOL	R	External event: Tripped	%MWr.m.c.2.0
FUSE	BOOL	R	External event: Fuse	%MWr.m.c.2.1
BLK	BOOL	R	Terminal block incorrectly wired	%MWr.m.c.2.2
EXT_PS_FLT	BOOL	R	External supply event	%MWr.m.c.2.3
INTERNAL_FLT	BOOL	R	Internal event module inoperative	%MWr.m.c.2.4
CONF_FLT	BOOL	R	Hardware or software configuration error	%MWr.m.c.2.5
COM_FLT	BOOL	R	Communication interruption	%MWr.m.c.2.6
SHORT_CIRCUIT	BOOL	R	External event: Short-circuit on a channel %MWr.m.c.2	
LINE_FLT	BOOL	R	Reserved for evolution %MWr.m.c.2	

Status word: CH_CMD

The table below shows the CH_CMD (%MWr.m.c.3) status word bit meanings. The command is made by a WRITE CMD (IODDT VAR1).

Standard symbol	Туре	Access	Meaning	Address
REAC_OUT	BOOL	R/W	Reactivation of tripped outputs (protected outputs)	%MWr.m.c.3.0
PS_CTRL_DIS	BOOL	R/W	Inhibit control of external supply	%MWr.m.c.3.1
PS_CTRL_EN	BOOL	R/W	Validation of the external supply control	%MWr.m.c.3.2

NOTE: This object is specific to output modules with reactivation.

NOTE: The control of the external power supply is managed to enable or disable a group of 16-channels from the PLC application and through a WRITE_CMD instruction addressing the 1st channel of 16-channel group (i.e. channel 0, 16, 32, 46). However this command does not work with the last eight channels of the 16-channel groups (i.e. channels 8..15, 24..31, 40..47, 56..63).

Details of the Language Objects of the IODDT of Type T_GEN_MOD

Introduction

The Modicon X80 modules have an associated IODDT of type T_GEN_MOD.

Observations

In general, the meaning of the bits is given for bit status 1. In specific cases an explanation is given for each status of the bit.

Some bits are not used.

List of Objects

The table below presents the objects of the IODDT.

Standard Symbol	Туре	Access	Meaning	Address
MOD_ERROR	BOOL	R	Module detected error bit	%lr.m.MOD.ERR
EXCH_STS	INT	R	Module exchange control word	%MWr.m.MOD.0
STS_IN_PROGR	BOOL	R	Reading of status words of the module in progress	%MWr.m.MOD.0.0
EXCH_RPT	INT	R	Exchange report word	%MWr.m.MOD.1
STS_ERR	BOOL	R	Event when reading module status words	%MWr.m.MOD.1.0
MOD_FLT	INT	R	Internal detected errors word of the module	%MWr.m.MOD.2
MOD_FAIL	BOOL	R	module inoperable	%MWr.m.MOD.2.0
CH_FLT	BOOL	R	Inoperative channel(s)	%MWr.m.MOD.2.1
BLK	BOOL	R	Terminal block incorrectly wired	%MWr.m.MOD.2.2
CONF_FLT	BOOL	R	Hardware or software configuration anomaly	%MWr.m.MOD.2.5
NO_MOD	BOOL	R	Module missing or inoperative	%MWr.m.MOD.2.6
EXT_MOD_FLT	BOOL	R	Internal detected errors word of the module (Fipio extension only)	%MWr.m.MOD.2.7
MOD_FAIL_EXT	BOOL	R	Internal detected error, module unserviceable (Fipio extension only)	%MWr.m.MOD.2.8
CH_FLT_EXT	BOOL	R	Inoperative channel(s) (Fipio extension only)	%MWr.m.MOD.2.9
BLK_EXT	BOOL	R	Terminal block incorrectly wired (Fipio extension only)	%MWr.m.MOD.2.10
CONF_FLT_EXT	BOOL	R	Hardware or software configuration anomaly (Fipio extension only)	%MWr.m.MOD.2.13
NO_MOD_EXT	BOOL	R	Module missing or inoperative (Fipio extension only)	%MWr.m.MOD.2.14

Modicon X80 Discrete I/O Module Configuration Constants

Module level constants

The table following presents the %KW common for each channel group of the module:

Object	Туре	Detail	Chan	nel grou	ıp qı					
%KWr.m.c.0 with c = 0, 8, 16, 24, 32, 40, 48, 56.	INT	For each channel group bit 0: Validation input function = 1 bit 1: Validation output function = 1 bit 2: Strategy of fallback: 1 = get value, 0 = stay at current value bit 3: Input filtering (1 = fast, 0 = normal), fixed at 0 bit 4: Ouput protection (1 = yes, 0 = no) bit 5: Rearm outputs: 1 = automatic, 0 = by command bit 6: Not used bit 7: Power supply control inhibition (1 = yes, 0 = 0)	0-7 1 st grp	8-15 2 nd grp	16-23 3 rd grp	24-31 4 th grp	32-39 5 th grp	40-47 6 th grp	48-55 7 th grp	56-63 8 th grp
			Fallba	ack valu	ie (ouput	ts) or sen	sor type	(inputs) fo	or chann	el:
		bit 8	0	8	16	24	32	40	48	56
		bit 9	1	9	17	25	33	41	49	57
		bit 10	2	10	18	26	34	42	50	58
		bit 11	3	11	19	27	35	43	51	59
		bit 12	4	12	20	28	36	44	52	60
		bit 13	5	13	21	29	37	45	53	61
		bit 14	6	14	22	30	38	46	54	62
		bit 15	7	15	23	31	39	47	55	63

Object	Туре	Detail	Cha	nnel gr	oup							
%KWr.m.c.1	INT											
byte 0	byte	Validation of Input/output open line control for channel:										
		bit 0	0	8	16	24	32	40	48	56		
		bit 1	1	9	17	25	33	41	49	57		
		bit 2	2	10	18	26	34	42	50	58		
		bit 3	3	11	19	27	35	43	51	59		
		bit 4	4	12	20	28	36	44	52	60		
		bit 5	5	13	21	29	37	45	53	61		
		bit 6	6	14	22	30	38	46	54	62		
		bit 7	7	15	23	31	39	31	55	63		
byte 1	byte	Validation of value memorization for channel:										
		bit 8	0	8	16	24	32	40	48	56		
		bit 9	1	9	17	25	33	41	49	57		
		bit 10	2	10	18	26	34	42	50	58		
		bit 11	3	11	19	27	35	43	51	59		
		bit 12	4	12	20	28	36	44	52	60		
		bit 13	5	13	21	29	37	45	53	61		
		bit 14	6	14	22	30	38	46	54	62		
		bit 15	7	15	23	31	39	47	55	63		
%KWr.m.c.2	INT											
byte 0	byte	not used	•					•				
byte 1	byte	not used										

There are one %KWr.m.c.0, one %KWr.m.c.1 and one %KWr.m.c.2 common for all channels for a group in this FB_type

NOTE: It is not possible to configure a module by programming using direct language objects %KW; these words are accessible in read only format.

Discrete Device DDT Names

Introduction

This topic describes the Control Expert **Discrete Device DDT**. The instance default naming is described in Device DDT Instance Naming Rule (see EcoStruxure ™ Control Expert, Program Languages and Structure, Reference Manual).

Regarding the device DDT, its name contains the following information:

- platform with:
 - O U for unified structure between Modicon X80 module and Quantum
- device type (DIS for discrete)
- function (STD for standard)
- direction:
 - O IN
 - OUT
- max channel (1, 2, 4 ...64)

Example

For a Modicon X80 module with 16 standard inputs/outputs: T_U_DIS_STD_IN_16_OUT_16

List of Implicit Device DDT

The following table shows the list of device DDT and their X80 modules:

Device DDT Type	Modicon X80 Devices
T_U_DIS_STD_IN_8	BMX DAI 0805 BMX DAI 0814
T_U_DIS_STD_IN_16	BMX DAI 1602 BMX DAI 1603 BMX DAI 1604 BMX DAI 1614 BMX DAI 1615 BMX DDI 1602 BMX DDI 1603 BMX DDI 1604
T_U_DIS_STD_IN_32	BMX DDI 3202K
T_U_DIS_STD_IN_64	BMX DDI 6404K
T_U_DIS_STD_OUT_8	BMX DRA 0804 BMX DRA 0805 BMX DRA 0815 BMX DRC 0805

Device DDT Type	Modicon X80 Devices
T_U_DIS_STD_OUT_16	BMX DDO 1612 BMX DDO 1602 BMX DAO 1605 BMX DAO 1615 BMX DRA 1605
T_U_DIS_STD_OUT_32	BMX DDO 3202K
T_U_DIS_STD_OUT_64	BMX DDO 6404K
T_U_DIS_STD_IN_8_OUT_8	BMX DDM 16022 BMX DDM 16025
T_U_DIS_STD_IN_16_OUT_16	BMX DDM 3202K

Implicit Device DDT Description

The following table shows the $\texttt{T_U_DIS_STD_IN_x}$ and the $\texttt{T_U_DIS_STD_OUT_y}$ status word bits:

Standard Symbol	Туре	Meaning	Access			
MOD_HEALTH	BOOL	0 = the module has a detected error	read			
		1 = the module is operating correctly				
MOD_FLT ¹	ВУТЕ	internal detected errors byte (see page 422) of the module	read			
DIS_CH_IN	ARRAY [0x-1]of T_U_DIS_STD_CH_IN	array of structure				
DIS_CH_OUT	ARRAY [0y-1] of T_U_DIS_STD_CH_OUT	array of structure				
1 Module Status is implicitly exchanged through the MOD_FLT field						

The following table shows the ${\tt T_U_DIS_STD_IN_x_OUT_y}$ status word bits:

Standard Symbol	Туре	Meaning	Access			
MOD_HEALTH	BOOL	0 = the module has a detected error	read			
		1 = the module is operating correctly				
MOD_FLT ¹	ВҮТЕ	internal detected errors byte (see page 422) of the module	read			
DIS_CH_IN	ARRAY [0x-1] of T_U_DIS_STD_CH_IN	array of structure				
DIS_CH_OUT	ARRAY [x(x+y-1)] of T_U_DIS_STD_CH_OUT	array of structure				
1 Module Status is implicitly exchanged through the MOD_FLT field						

The following table shows the $T_U_DIS_STD_CH_IN[0...x-1]$ and $T_U_DIS_STD_CH_IN[0...x-1]$

Standard Symbol	Туре	Meaning	Access		
CH_HEALTH	BOOL	0 = the channel has a detected error			
		1 = the channel is operating correctly			
VALUE EBOOL indicates the status of the sensor controlling the input chann		indicates the status of the sensor controlling the input channel c	read ¹		
1 VALUE of the T U DIS STD CH OUT structure can be accessed in read / write					

Explicit DDT Instances Description

Explicit exchanges (Read Status or Write Command) - only applicable to Modicon X80 I/O channels - are managed with READ_STS_QX or WRITE_CMD_QX EFB instances for Modicon Quantum and by READ_STS_MX or WRITE_CMD_MX EFB instances for Modicon M580.

- Targeted channel address (ADDR) can be managed with ADDMX EF (connect ADDMX OUT to ADDR)
- READ_STS_QX or READ_STS_MX output parameter (STS) can be connected to a "T_M_xxx_yyy_CH_STS" DDT instance (variable to be created manually), where:
 - xxx represents the device type
 - O yyy represents the function

Example: T M DIS STD CH STS

WRITE_CMD_QX or WRITE_CMD_MX input parameter (CMD) can be connected to a
 ""T_M_DIS_STD_xxx_yyy_CMD" DDT instance

where:

- O xxx represents the device type
- O yyy represents the direction

Example: T M DIS STD CH IN CMD

For more details about EF and EFB, refer to *EcoStruxure™ Control Expert, I/O Management, Block Library* and *EcoStruxure™ Control Expert, Communication, Block Library*.

The following table shows the T	Μ	DIS	STD	СН	STS structure status word bits:
---------------------------------	---	-----	-----	----	---------------------------------

Standard Symbol		Туре	Bit	Meaning	Access
CH_FLT	TRIP	BOOL	0	external detected error tripped	read
	FUSE	BOOL	1	external detected error: fuse	read
	BLK	BOOL	2	terminal block detected error	read
	EXT_PS_FLT	BOOL	3	internal detected error: module out of order	read
	INTERNAL_FLT	BOOL	4	external supply detected fault	read
	CONF_FLT	BOOL	5	configuration detected fault: different hardware and software configurations	read
	COM_FLT	BOOL	6	problem communicating with the PLC	read
		BOOL	7	reserved	read
	SHORT_CIRCUIT	BOOL	8	external detected error: short-circuit on a channel	read
	LINE_FLT	BOOL	9	Open wire detection ⁽¹⁾	read
(1) Only for BMX DAI 1614 and BMX DAI 1615 modules.					

The following table presents the ${\tt T}$ ${\tt M}$ ${\tt DIS}$ ${\tt STD}$ ${\tt CH}$ ${\tt IN}$ ${\tt CMD}$ structure status word bits:

Standard Symbol		Туре	Bit	Meaning	Access
CH_CMD [INT]	PS_CTRL_DIS	BOOL	1	disable control of the external supply	read / write
	PS_CTRL_EN	BOOL	2	enable control of the external supply	read / write

The following table presents the $\texttt{T_M_DIS_STD_CH_OUT_CMD}$ structure status word bits:

Standard Symbol		Туре	Bit	Meaning	Access
CH_CMD [INT]	REAC_OUT	BOOL	0	reactivation of tripped outputs (protected outputs)	read / write
	PS_CTRL_DIS	BOOL	1	disable control of the external supply	read / write
	PS_CTRL_EN	BOOL	2	enable control of the external supply	read / write

NOTE: In a user application the WRITE_CMD_QX (in an EIO drop) can also define the active or inactive state of the external power supply monitoring and overrides the **Supply monitoring** setting. WRITE_CMD_QX only works over the first 8 channels (0...7, 16...23, 32...39 and 48...55) of the 16-channel groups, but affects all 16 channels of the group.

MOD_FLT Byte Description

MOD_FLT Byte in Device DDT

MOD_FLT byte structure:

Bit	Symbol	Description
0	MOD_FAIL	 1: Internal detected error or module failure detected. 0: No detected error
1	CH_FLT	1: Inoperative channels.0: Channels are operative.
2	BLK	 1: Terminal block detected error. 0: No detected error. NOTE: This bit may not be managed.
3	-	 1: Module in self-test. 0: Module not in self-test. NOTE: This bit may not be managed.
4	_	Not used.
5	CONF_FLT	 1: Hardware or software configuration detected error. 0: No detected error.
6	NO_MOD	1: Module is missing or inoperative.0: Module is operating.
		NOTE: This bit is managed only by modules located in a remote rack with a BME CRA 312 10 adapter module. Modules located in the local rack do not manage this bit that remains at 0.
7	-	Not used.

Chapter 34 Debugging

Subject of this Section

This section describes the debugging aspect of the application-specific discrete module for implementation.

What Is in This Chapter?

This chapter contains the following topics:

Торіс	Page
Introduction to the Debugging Function of a Discrete Module	424
Debugging Screen	425
How to Access the Forcing/Unforcing Function	427
How to Access the SET and RESET Commands	428
How to Access the Reactivation of Outputs Command	429
Applied Outputs of a Discrete Module	430

Introduction to the Debugging Function of a Discrete Module

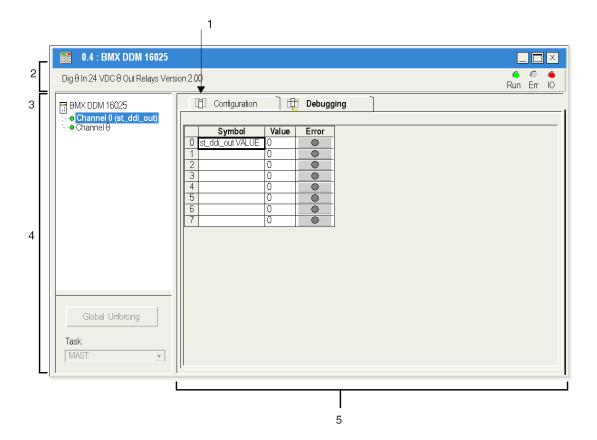
Introduction

For each discrete input/output module, the Debug function enables:

- display of the parameters of each of its channels (channel state, filtering value, etc.)
- access to the diagnostics and adjustment functions for the selected channel (channel forcing, channel masking, etc.)

The function also gives access to module diagnostics in the event of a detected error.

NOTE: This function is only available in on-line mode.


Debugging Screen

At a Glance

The debugging screen (see EcoStruxure ™ Control Expert, Operating Modes) shows, in real time, the value and state of each channel of the selected module. It also allows access to the channel commands (forcing of the input or output value, reactivation of outputs, etc.).

Illustration

The figure below shows a sample debugging screen.

Description

The following table shows the various parts of the debugging screen and their functions.

Number	Element	Function
1	Tabs	The tab in the foreground indicates the mode in progress (Debug in this example). Every mode can be selected using the respective tab. • Debug which can be accessed only in online mode • Configuration
2	Module area	Contains the abbreviated title of the module. In the same area there are 3 LEDs which indicate the module's operating mode: RUN indicates the operating status of the module ERR indicates an internal event in the module I/O indicates an event from outside the module or an application issue
3	Channel area	Allows you: ■ by clicking on the reference number, to display the tabs: □ Description which gives the characteristics of the device □ I/O Objects, (see EcoStruxure™ Control Expert, Operating Modes) which is used to pre-symbolize the input/output objects □ Fault which shows the device status (in on-line mode)
		 to select a channel to display the Symbol, name of the channel defined by the user (using the variable editor)
4	General parameters area	Specifies the parameters of the channel: Function: specifies the function configured. This heading is frozen. The Global unforcing button provides direct access to the global unforcing of channels function. Task: specifies the MAST or FAST task configured. This heading is frozen.
5	Parameters in progress field	This field displays the state of inputs and outputs and the various current parameters. For each channel, four items of information are available: Symbol displays the symbol associated with the channel when it has been defined by the user (using the variable editor) Value displays the state of each channel of the module Error provides direct access to channel by channel diagnostics when these are inoperable (indicated by the LED built into the diagnostics access, which turns red)

How to Access the Forcing/Unforcing Function

At a Glance

This function allows you to modify the state of all or part of the channels of a module.

NOTE: The state of a forced output is frozen and can only be modified by the application after unforcing. However, in the event of a detected error leading to output fallback, the state of these outputs -assumes the value defined when configuring the **Fallback mode** (see page 401) parameter.

The various commands available are:

- for one or more channels:
 - o force to 1
 - o force to 0
 - unforcing (when the channel or channels selected are forced)
- for all the channels on the module (when at least one channel is forced):
 - o global unforcing of channels

Procedure

The following table shows the procedure for forcing or unforcing all or part of the channels of a module.

Step	Action for one channel	Action for all channels
1	Access the module's debugging screen.	
2	In the Value column, right-click the cell of the required channel.	Click on the Global unforcing button found in the general parameters field.
3	Select the required function: • forcing to 0 • forcing to 1	

How to Access the SET and RESET Commands

At a Glance

These commands are used to change the state of a module's outputs to 0 (RESET) or 1 (SET).

NOTE: The state of the output affected by one of these commands is temporary and can be modified at any time by the application when the PLC is in **RUN**.

Procedure

The table below shows the procedure for assigning the value 0 or 1 to all or part of the channels of a module.

Step	Action for one channel
1	Access the module's debugging screen.
2	In the Value column, right-click the cell of the required channel.
3	Select the desired function. Set Reset

How to Access the Reactivation of Outputs Command

At a Glance

When an event has caused a tripped output, this command is used to reactivate the output if no error remains at its terminals.

Reset is defined by a group of 8 channels. It has no effect on an inactive channel or channel without a detected error.

Procedure

The following table shows the procedure for reactivating tripped outputs.

Step	Action
1	Access the module's debugging screen.
2	For the chosen group of channels, click on the Reset button situated in the General parameters field.

Applied Outputs of a Discrete Module

At a Glance

This check (red **Stop** LED lit) informs the user that a given group of output channels is not correctly applied by the PLC (fallback status).

The possible causes are:

- processor error
- rack connection error
- inter-rack link connection error

35012474 10/2019

Chapter 35

Diagnostics of the Modules

Subject of this Section

This section describes the diagnostic aspect in the implementation of the application-specific discrete modules.

What Is in This Chapter?

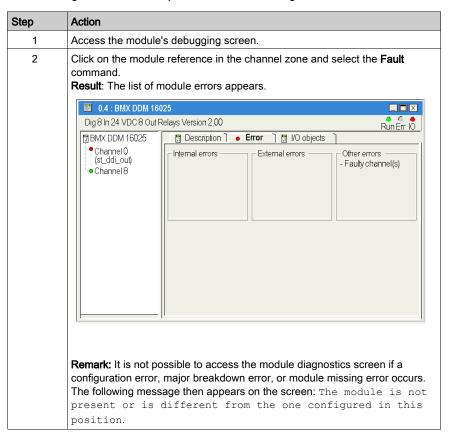
This chapter contains the following topics:

Topic	Page
How to Access the Diagnostics Function	432
How to Access the Channel Diagnostics Function of a Discrete Module	434

How to Access the Diagnostics Function

At a Glance

The **Module diagnostics** function displays current errors and where they exist. Errors are classified according to their category.


- Internal events:
 - o module inoperable
 - o self-tests running
- External events
- Other events:
 - o configuration error
 - o module missing or off
 - o inoperative channel(s)

A module status is indicated when certain LED's change to red, such as:

- in the configuration editor at rack level:
 - o the LED of the rack number
 - o the LED of the slot number of the module on the rack
- in the configuration editor at module level:
 - o the I/O LED according to the type of event
 - o the Channel LED in the Channel field
 - o the Fault tab

Procedure

The following table shows the procedure for accessing the Module status screen.

How to Access the Channel Diagnostics Function of a Discrete Module

At a Glance

The **Channel diagnostics** function displays current errors and where they exist. Errors are classified according to their category:

- Internal events:
 - o inoperative channel
- External events:
 - o link or sensor supply fault
- Other events:
 - o terminal block incorrectly wired
 - o configuration error
 - o communication interruption

A channel error appears in the **Debug** tab when the LED, located in the **Error** column, turns red.

Procedure

The following table shows the procedure for accessing the **Channel error** screen.

Appendices

Appendix A

Topological/State RAM Addressing of the Modules

Topological/State RAM Addressing of ModiconX80 Discrete Modules

Discrete Modules

With firmware 2.4 or later, you can access the modules either via topological or State RAM addresses. Please also refer to *Memory Tab* (see EcoStruxure ™ Control Expert, Operating Modes).

The following table shows the Modicon X80 discrete module objects that can be mapped to topological or State RAM addresses.

Module reference	Topological address	State RAM address
BMX DAI 0805 BMX DAI 0814	%I rack.slot.channel, channel [0,7]	-%IStart address %IStart address + 7, one channel per %I or -%IWStart address, one channel per bit of %IW
BMX DAI 1602	%I rack.slot.channel, channel [0,15]	- %IStart address %IStart address + 15, one channel per %I or - %IWStart address, one channel per bit of %IW
BMX DAI 1603	%I rack.slot.channel, channel [0,15]	- %IStart address %IStart address + 15, one channel per %I or - %IWStart address, one channel per bit of %IW
BMX DAI 1604	%I rack.slot.channel, channel [0,15]	- %IStart address %IStart address + 15, one channel per %I or - %IWStart address, one channel per bit of %IW
BMX DAI 0804	%I rack.slot.channel, channel [0,7]	- %IStart address %IStart address + 7, one channel per %I or - %IWStart address, one channel per bit of %IW
BMX DAI 1614 BMX DAI 1615	%I rack.slot.channel, channel [0,15]	- %IStart address %IStart address + 15, one channel per %I or - %IWStart address, one channel per bit of %IW
BMX DAO 1605	%Q rack.slot.channel, channel [0,15]	- %MStart address %MStart address + 15, one channel per %M or - %MWStart address, one channel per bit of %MW

Module reference	Topological address	State RAM address
BMX DAO 1615	%Q rack.slot.channel, channel [0,15]	- %MStart address %MStart address + 15, one channel per %M or - %MWStart address, one channel per bit of %MW
BMX DAO 0805	%Q rack.slot.channel, channel [0,7]	- %MStart address %MStart address + 7, one channel per %M or - %MWStart address, one channel per bit of %MW
BMX DDI 1602	%I rack.slot.channel, channel [0,15]	- %IStart address %IStart address + 15, one channel per %I or - %IWStart address, one channel per bit of %IW
BMX DDI 1603	%I rack.slot.channel, channel [0,15]	- %IStart address %IStart address + 15, one channel per %I or - %IWStart address, one channel per bit of %IW
BMX DDI 1604	%I rack.slot.channel, channel [0,15]	- %IStart address %IStart address + 15, one channel per %I or - %IWStart address, one channel per bit of %IW
BMX DDI 0804	%I rack.slot.channel, channel [0,7]	- %IStart address %IStart address + 7, one channel per %I or - %IWStart address, one channel per bit of %IW
BMX DDI 3202K	%I rack.slot.channel, channel [0,31]	- %IStart address %IStart address + 31, one channel per %I or - %IWStart address %IWStart address + 1, one channel per bit of %IW
BMX DDI 6402K	%I rack.slot.channel, channel [0,63]	- %IStart address %IStart address + 63, one channel per %I or - %IWStart address %IWStart address + 3, one channel per bit of %IW
BMX DDM 16022	%I rack.slot.channel, channel [0,7] %Q rack.slot.channel, channel [16,23]	- %IStart address %IStart address + 7, one channel per %I and - %M Start address %MStart address + 7, one channel per %M or - %IWStart address, one channel per bit of %IW and %MWStart address, one channel per bit of %MW

Module reference	Topological address	State RAM address
BMX DDM 16025	%I rack.slot.channel, channel [0,7] %Q rack.slot.channel, channel [16,23]	- %IStart address %IStart address + 7, one channel per %I and - %M Start address %MStart address + 7, one channel per %M or - %IWStart address one channel per bit of %IW and - %MWStart address, one channel per bit of %MW
BMX DDM 3202K	%I rack.slot.channel, channel [0,15] %Q rack.slot.channel, channel [16,31]	- %IStart address %IStart address + 15, one channel per %I and - %M Start address %MStart address + 15, one channel per %M or - %IWStart address, one channel per bit of %IW and - %MWStart address, one channel per bit of %MW
BMX DDO 1602	%Q rack.slot.channel, channel [0,15]	- %MStart address %MStart address + 15, one channel per %M or - %MWStart address, one channel per bit of %MW
BMX DDO 1612	%Q rack.slot.channel, channel [0,15]	- %MStart address %MStart address + 15, one channel per %M or - %MWStart address, one channel per bit of %MW
BMX DDO 3202K	%Q rack.slot.channel, channel [0,31]	- %MStart address %MStart address + 31, one channel per %M or - %MWStart address %MWStart address + 1, one channel per bit of %MW
BMX DDO 6402K	%Q rack.slot.channel, channel [0,63]	- %MStart address %MStart address + 63, one channel per %M or - %MWStart address %MWStart address + 3, one channel per bit of %MW
BMX DRA 0804	%Q rack.slot.channel, channel [0,7]	- %MStart address %MStart address + 7, one channel per %M or - %MWStart address, one channel per bit of %MW
BMX DRA 0805	%Q rack.slot.channel, channel [0,7]	- %MStart address %MStart address + 7, one channel per %M or - %MWStart address, one channel per bit of %MW

Module reference	Topological address	State RAM address
BMX DRA 0815	%Q rack.slot.channel, channel [0,7]	- %MStart address %MStart address + 7, one channel per %M or - %MWStart address, one channel per bit of %MW
BMX DRC 0805	%Q rack.slot.channel, channel [0,7]	- %MStart address %MStart address + 7, one channel per %M or - %MWStart address, one channel per bit of %MW
BMX DRA 1605	%Q rack.slot.channel, channel [0,15]	- %MStart address %MStart address + 15, one channel per %M or - %MWStart address, one channel per bit of %MW

For additional information please refer to *Special Conversion for Compact I/O Modules* (see EcoStruxure TM Control Expert, Concept Application Converter, User Manual).

Glossary

C

Channel group

Channels of the same type with common parameters. This notion concerns certain applicationspecific modules such as discrete modules.

CPU

Central Processing Unit: generic name used for Schneider Electric processors.

D

DDT

(derived data type) A set of elements with the same type (array) or with different types (structure).

discrete module

Discrete inputs/outputs

ı

IODDT

Type of data derived from inputs/outputs (Input/Output Derived Data Type).

IP20

This index is present on all device labels. It specifies the device level of protection:

- against an intrusion of solids and dust, against contact with parts that are powered up (in our case, IP2•: protection against solids larger than 12 mm);
- against permeation of liquids (in our case, IP•0: Negligeable presence of water).

P

PLC

Type of computer dedicated to controlling industrial processes (Programmable Logic Controller).

Т

TELEFAST 2

A group of products which enable discrete input and output modules to be quickly connected to operational components. This system, which consists of connection bases for interfaces and linking cables, can only be connected to modules which are fitted with 40-pin connectors.

Index

0 - 9

20-pin terminal blocks installing, *60*40-pin terminal blocks installing, *64*

Α

ABE-7H08R10. 351 ABE-7H08R11, 351 ABE-7H08R21, 355 ABE-7H08S21. 359 ABE-7H12R10, 353 ABE-7H12R11, 353 ABE-7H12R20, 357 ABE-7H12R21, 357 ABE-7H12R50, 365 ABE-7H12S21. 361 ABE-7H16F43, 369 ABE-7H16R10, 351 ABE-7H16R11. 351 ABE-7H16R20, 355 ABE-7H16R21, 355 ABE-7H16R23. 355 ABE-7H16R30, 363 ABE-7H16R31, 363 ABE-7H16R50, 367 ABE-7H16S21, *359* ABE-7H16S43. 371 ABR-7xxx relays, 379 ABS-7Exx relays, 380 applied outputs, 430

В

BMWFTB2020, 43 BMWFTB4020, 46 BMWFTB4020H, 46 BMX FTW ••1 connection cables, 53 BMX FTW ••5 connection cables, 57 BMXDAI0805, 182 BMXDAI0805H. 182 BMXDAI0814, 190 BMXDAI1602. 136 BMXDAI1602H. 136 BMXDAI1603, 146 BMXDAI1603H, 146 BMXDAI1604. 154 BMXDAI1604H, *154* BMXDAI1614, 162 BMXDAI1614H, 162 BMXDAI1615, 172 BMXDAI1615H, 172 BMXDAO1605. 286 BMXDAO1605H. 286 BMXDAO1615. *294* BMXDAO1615H. 294 BMXDDI1602, 110 BMXDDI1602H, 110 BMXDDI1603. 118 BMXDDI1603H, 118 BMXDDI1604T, 126 BMXDDI3202K. 198 BMXDDI3202KH, 198 BMXDDI6402K. *206* BMXDDI6402KH, 206 BMXDDM16022, 304 BMXDDM16022H, *304* BMXDDM16025, *314* BMXDDM16025H, 314 BMXDDM3202K, *324* BMXDDO1602, 214 BMXDDO1602H, 214 BMXDDO1612, 222 BMXDDO1612H, 222 BMXDDO3202K, 270 BMXDDO3202KC. 270 BMXDDO6402K, 278 BMXDDO6402KC, 278 BMXDRA0804T, 230 BMXDRA0805, 238

BMXDRA0805H, 238	connection cables, 79, 85
BMXDRA0815, 246	
BMXDRA0815H, 246	_
BMXDRA1605, 254	D
BMXDRA1605H, <i>254</i>	debugging, 423
BMXDRC0805, 262	diagnostics, 431, 434
BMXDRC0805H, 262	, ,
BMXFCC051, 85	_
BMXFCC053, 85	F
BMXFCC1001, 85	fallback mode, 401
BMXFCC1003, 85	FCN connector
BMXFCC101, 85	installing, 79, 85
BMXFCC103, 85	FCN type connector
BMXFCC201, <i>85</i>	installing, 69
BMXFCC203, <i>85</i>	forcing, <i>427</i>
BMXFCC301, 85	3,
BMXFCC303, 85	_
BMXFCC501, 85	
BMXFCC503, <i>85</i>	input parameters, 395
BMXFCW1001, 79	mpat parameters, coo
BMXFCW1003, 79	
BMXFCW301, 79	M
BMXFCW303, 79	MOD_FLT, 422
BMXFCW501, 79	WOD_1 L1, 422
BMXFCW503, 79	
BMXFTB2000, 43	0
BMXFTB2010, 43	output parameters 206
BMXFTB4000, 46	output parameters, 396
BMXFTB4000H, 46	output reset, 402
BMXFTW1001, <i>52</i>	
BMXFTW301 , <i>52</i>	P
BMXFTW305, <i>55</i>	•
BMXFTW501 , <i>52</i>	parameter settings, 403, 404
BMXFTW505, <i>55</i>	
	R
C	reactivation of outputs, 429
certifications, 37	relays, <i>373</i> , <i>381</i>
channel data structure for all modules	RESET, <i>428</i>
T_DIS_IN_GEN, 407	
T_DIS_IN_STD, 408, 409	S
T_DIS_OUT_GEN, 411	
T_DIS_OUT_STD, 412, 413	SET, 428
T_GEN_MOD, <i>415</i>	simulator, 385
connection bases, 333	standards, 37
	state RAM/topological addressing of X80 dis-

crete modules, 437

Т

T_DIS_IN_GEN, 407 T_DIS_IN_STD, 408, 409 T_DIS_OUT_GEN, 411 T_DIS_OUT_STD, 412, 413 T GEN MOD, 415 T_U DIS_STD_IN_16, 418 T_U_DIS_STD_IN_16_OUT_16, 418 T_U_DIS_STD_IN_32, 418 T_U_DIS_STD_IN_64, 418 T_U_DIS_STD_IN_8, 418 T_U_DIS_STD_IN_8_OUT_8, 418 T_U_DIS_STD_OUT_16, 418 T_U_DIS_STD_OUT_32, 418 T_U_DIS_STD_OUT_64, 418 T U DIS STD OUT 8, 418 task parameter, 399 TELEFAST 2, 333 temperature derating, 35 terminal blocks installing, 39, 40 topological/state RAM addressing of X80 discrete modules, 437

W

wiring precautions, 75