

SmartConnector
Developers Guide
EcoBuildings EcoStruxure Labs

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 1 of 30

1 Revision History ..2

2 Overview ..3

2.1 Scope ..3

2.2 Description ..3

3 How SmartConnector Works ..4

3.1 Processor ..5

3.2 Processor Configuration ...5

3.3 Schedules ..5

3.4 EWS Server ..5

3.5 Extension ..5

3.6 Workers ..5

3.7 Worker Manager ...5

3.8 Persistent Data Store ...5

3.9 In-Memory Cache ..6

3.10 OData REST API..6

3.11 Logging ...6

4 Obtaining SmartConnector ..7

4.1 Configuring the NuGet Source ..7

4.2 NuGet Packages ...8

5 Sample NuGet Packages .. 10

5.1 Installation .. 10

5.2 NUnit .. 11

5.3 SmartStruxure™ Solution.. 13

5.4 Running the Samples.. 13

6 Writing Your Code ... 16

6.1 Solution Structure .. 16

6.2 Processors ... 16

6.2.1 Execute_Subclass ... 16

6.2.2 Validation .. 17

6.2.3 Other Interfaces ... 18

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 2 of 30

6.2.4 Other Attributes ... 18

6.3 EWS Servers .. 19

6.4 Licensing ... 19

6.4.1 Licensing your Extension ... 20

6.4.2 Opting Out ... 20

6.4.3 Custom Licensing .. 20

7 Annotating Your Assemblies... 22

8 Testing Your Code ... 23

9 Deploying Your Code ... 24

9.1 Strong-Named Assemblies.. 24

9.2 Updating Extension Assemblies .. 24

10 Appendix... 25

10.1 OData API.. 25

10.1.1 Authentication ... 25

10.1.2 What you can do with the API ... 26

10.1.3 Other Controllers.. 27

10.2 Third Party Tools.. 28

10.2.1 Fiddler ... 28

10.2.2 LINQPad... 28

10.3 Supported Operating Systems .. 29

10.4 Supported Database Servers... 29

1 Revision History

Date Author Revision Changes Made
10/21/2014 MRS 1 Initial release

02/16/2015 MRS 2 Updated for v1.3
09/30/2015 MRS 3 Updated for v2.0

04/04/2016 MRS 4 Updated for v2.1

© 2016 Schneider Electric. All Rights Reserved. Schneider Electric, StruxureWare, SmartStruxure solution, and
EcoStruxure are trademarks owned by Schneider Electric Industries SAS or its affiliated companies. All other

trademarks are the property of their respective owners.

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 3 of 30

2 Overview

2.1 Scope

This document is intended as a guide for developers authoring extensions using SmartConnector – the

Windows service middleware framework developed by EcoBuildings EcoStruxure® Labs. This document

assumes the reader has the requisite knowledge of C# or VB.NET® and is moderately comfortable

developing class libraries in Visual Studio® .NET.

This document will not cover the details pertaining to installation, configuration, monitoring, and control

of SmartConnector in a runtime environment. That information can be found in “SmartConnector

Installation and Configuration Guide”.

2.2 Description

When developing solutions there is frequently a need for software that can bridge the gap between

Schneider Electric Building Management Systems (BMS) and third party systems and data sources. This

software goes by varying names: protocol shims, glue logic or more generally, middleware. As different

projects are analyzed, patterns begin to emerge where this middleware performs similar actions with

only minor variations from solution to solution. SmartConnector was conceived to be this middleware

framework.

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 4 of 30

3 How SmartConnector Works
SmartConnector is an extensible and configurable application framework. At its simplest,

SmartConnector is a multi-threaded Windows service. Threads are configured and scheduled or

commanded to execute a Processor with a predefined set of inputs; a Processor Configuration. While

SmartConnector does include some sample Processor classes for operational validation, Processors are

typically written by others using SmartConnector’s public libraries and packaged as SmartConnector

Extensions.

The SmartConnector Runtime includes an OData API which provides a full CRUD and other custom

actions that allow users to configure, monitor, and control SmartConnector using any OData compliant

client.

The SmartConnector Runtime includes EcoStruxure Web Service (EWS) Serve capabilities as well.

SmartConnector can serve multiple logical EWS endpoints configured in a multi-tenant environment.

This means that the data for one EWS server is logically separated from all other EWS servers. Also

included is a data adapter framework so solutions can be developed to pull in data from one or more

different sources, consolidate it, scrub it and then serve it up in the EWS v1.2 common data model – to

SmartStruxure for example – via a standard EWS client connection.

Figure 1 shows the general architecture of SmartConnector.

Figure 1: SmartConnector General Architecture

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 5 of 30

3.1 Processor

The Processor is the core of the runtime execution of SmartConnector. Processors are .NET classes

which do the work required in an application solution. Work can be as simple or as complicated as

needed to meet the application’s requirements. Multiple Processors can also be combined to perform

work asynchronously in a cooperative manner.

3.2 Processor Configuration

While a Processor defines how work is accomplished, a Processor Configuration specifically dictates

what gets accomplished. A Processor Configuration contains all of the information needed to instantiate

a class at runtime, hydrate all properties of that class, and validate that everything is correct before

finally executing the Processor. A Processor Configuration also links to the requisite scheduling

information which determines how often SmartConnector will run a Processor and when.

3.3 Schedules

Schedules can be defined to execute a Processor based on an interval (second, minute, hour, or day

granularity), weekly, or monthly basis. One Schedule can be used by any number of Processor

Configurations.

3.4 EWS Server

SmartConnector can serve multiple logical EWS v1.2 compliant servers. A data management adapter

class is included in SmartConnector’s core set of libraries. This adapter allows a Processor to interact

with the persistent data store for all supported CRUD actions in a consistent manner.

3.5 Extension

Extensions are class assemblies, written by others, to solve an application problem. An extension may

contain one or more custom Processor classes and/or one or more EWS Servers.

3.6 Workers

Workers represent the threads in the SmartConnector Runtime that execute Processors. The number of

available Workers is configurable but is generally limited by the host system hardware. When not

actively running a Processor, Workers are inactive, waiting for a command from the Worker Manager.

In this state, Workers consume virtually no system resources.

3.7 Worker Manager

The Worker Manager is responsible for selecting a Processor Configuration, instantiating its defined

Processor and passing it off to an idle Worker for execution. The Worker Manager also listens to

external input to start or stop a Processor or EWS Server as required.

3.8 Persistent Data Store

SmartConnector is backed by a SQL database to persist all manner of data including setup parameters,

configuration data, schedule data, and EWS server data. SmartConnector also provides a Processor

Values data store that Processors can access directly. This data store can be used to save state between

run iterations of the Processor or to enable collaboration between multiple Processors.

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 6 of 30

3.9 In-Memory Cache

In addition to a persistent data store, SmartConnector provides a mechanism to have a volatile in-

memory cache of data. A singleton class available to any Processor and EWS Server provides strongly

typed access to any data the author wishes to store.

3.10 OData REST API

Communicating with the SmartConnector Runtime is done via an OData compliant REST API. Refer to

the Appendix for details; however you are encouraged to read the entire guide prior to attempting to

consume the API.

3.11 Logging

SmartConnector provides an integrated logging framework. Logging levels of Info, Status, Error, Debug,

and Trace are extensively used throughout the SmartConnector Runtime and public libraries. The

Logger is also available to Processor authors for adding their own log information to the common log file

output.

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 7 of 30

4 Obtaining SmartConnector
SmartConnector’s public libraries are distributed via NuGet packages. SmartConnector’s NuGet

packages are hosted in a private feed on www.myget.org. To obtain access to this feed, you need to

register with the www.smartconnectorserver.com. Once you have authenticated on this site, click

“Send a request to become a SmartConnector Developer” link and supply the required information.

Once you are granted access you will receive an email from MyGet. Follow the instructions contained in

the email.

4.1 Configuring the NuGet Source

Once you have gained access to the SmartConnector Feed, you should configure Visual Studio to always

include this feed when searching for NuGet packages. Perform the following:

Note steps are based on Visual Studio 2015. Older versions may have slightly different steps

1. In Visual Studio, select the Tools-Options-NuGet Package Manager option.

2. Click Package Sources.

3. Click + to add a new source.

4. At the bottom of the dialog, enter a Name of “SmartConnector” and a Source of

https://www.myget.org/F/mongoose/auth/YOUR_API_KEY/api/v2 where YOUR_API_KEY is your

personal API key from MyGet.

5. Click Update.

6. The dialog should look similar to Figure 2.

Figure 2: Package Manager Settings for SmartConnector NuGet Feed

http://www.myget.org/
http://www.smartconnectorserver.com/
https://www.myget.org/F/mongoose/auth/YOUR_API_KEY/api/v2

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 8 of 30

7. Click OK.

4.2 NuGet Packages

SmartConnector currently provides numerous NuGet packages to facilitate Processor development and

testing. However, most are simply dependent pieces of other core packages.

4.2.1.1 SxL.Common

This NuGet package contains low level support classes for other packages.

4.2.1.2 SxL.Licensing

This NuGet package contains helpers for licensing aspects.

4.2.1.3 Ews.Common

This NuGet package contains EWS data constructs which are commonly used when serving EWS or

consuming a EWS endpoint.

4.2.1.4 Ews.Client

This NuGet package contains all classes and data proxy constructs needed to consume any EWS v1.1 (or

later) compliant endpoint.

4.2.1.5 Ews.Server.Contract

This NuGet package contains a fully customizable MVC style EWS Server implementation.

4.2.1.6 Mongoose.Common

This NuGet package contains low level support classes for the SmartConnector Runtime.

4.2.1.7 Mongoose.Configuration

This NuGet package contains data classes for creating SmartConnector Processor Configurations.

4.2.1.8 Mongoose.Ews.Server

This NuGet package contains the SmartConnector standard EWS Server implementation. It can be

customized as needed.

4.2.1.9 Mongose.Ews.Server.Data

This NuGet package contains classes for managing the internal data for a SmartConnector EWS Server.

4.2.1.10 Mongoose.Ews.Server.Sample

This NuGet package contains classes which illustrate how to extend and consume SmartConnector EWS

Servers. This package will be reviewed in detail in a later section.

4.2.1.11 Mongoose.Process

This NuGet package contains the core SmartConnector framework library. When creating custom

Processors, you will always need to include this NuGet package.

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 9 of 30

4.2.1.12 Mongoose.Process.Sample

This NuGet package contains classes which illustrate how to extend and consume SmartConnector

Processors. This package will be reviewed in detail in a later section.

4.2.1.13 Mongoose.Process.Test

This NuGet package contains classes, extension methods and other helpers to aid in writing unit tests for

Processors.

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 10 of 30

5 Sample NuGet Packages
In an effort to jumpstart development, special sample NuGet packages are available; these will configure

a .NET class library to be a SmartConnector Extension. They will also inject a series of examples and

NUnit test fixtures which can be executed to demonstrate how they operate. These packages can be

used individually or in the same solution.

5.1 Installation

The following steps illustrate how to create an initial SmartConnector solution.

Note steps are based on Visual Studio 2015. Older versions may have slightly different steps

1. Start Visual Studio

2. Create a new Project. The project type should be a “Class Library”.

3. After the project is initialized right click the References item in the Solution Explorer.

4. Choose Manage NuGet Packages.

5. Select the “SmartConnector” feed you configured above.

6. Confirm that “Include prerelease” is not checked.

7. Click Browse. You should see something like Figure 3.

Figure 3: NuGet Package Manager Browsing SmartConnector Feed

8. Scroll down and select one of the available samples packages. You should be using the latest

version of the package.

a. “Mongoose.Process.Sample” will demonstrate how to create Processor classes.

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 11 of 30

b. “Mongoose.Ews.Server.Sample” will demonstrate how to customize the base EWS Serve

capabilities.

9. Click Install.

At this point, Visual Studio will begin installing all of the referenced NuGet package and their defined

dependencies (you may need to accept some license agreements for dependent packages) . If all goes

well, there should be a folder labeled “Samples\Mongoose”. Build to confirm that everything was

installed properly.

5.2 NUnit

The test fixtures distributed with the samples are based on the open source unit testing framework

NUnit (www.nunit.org). This document does not describe how to write unit tests, however it does

describe how to use NUnit with the samples provided. If using a third party productivity add-on for

Visual Studio which includes a test runner (such as ReSharper), skip to Running the Samples .

All necessary NUnit references in the samples are included as NuGet package dependencies. However,

in order to execute these tests the NUnit test runner is required. The NUnit test runner can be found at

http://www.nunit.org/index.php?p=download. Only the appropriate version for one’s current

development environment should be downloaded and installed.

Note: At this time, SmartConnector samples support NUnit through v2.6.x.

After you have installed NUnit, you can link your Visual Studio class library project to it by configuring

your project as follows:

1. Build the project. The binaries must exist in order to complete these steps.

2. Open the properties page for the class library project.

3. Click the Debug tab.

4. Select “Start External Program”.

5. Click the ellipsis button and navigate to the location where NUnit was installed.

6. In the command line arguments, enter the complete path to the DLL which is generated from

the project. When completed, properties should look something like Figure 4.

http://www.nunit.org/
http://www.jetbrains.com/resharper
http://www.nunit.org/index.php?p=download

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 12 of 30

Figure 4: Test Project Debug Properties

7. Run your project.

At this point, NUnit should open and load the project into the “runner”. The result should look like

Figure 5.

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 13 of 30

Figure 5: NUnit Runner

If your project configuration is setup for “Debug”, breakpoints in your code will not be immediately

honored. The issue is well documented on Stack Overflow

(http://stackoverflow.com/questions/3076807/vs-2010-nunit-and-the-breakpoint-will-not-currently-be-

hit-no-symbols-have-b). The solution is to add the following snippet to the app.config of NUnit. The

section can be added immediately after the opening configuration tag.

<startup>

 <requiredRuntime version="4.0.30319" />

</startup>

After performing this step, all breakpoints in the sample code will be honored when executing the test

runner from the IDE.

5.3 SmartStruxure™ Solution

Many of the samples communicate with a EWS endpoint. This can be any EWS v1.1 (or later) compliant

endpoint. However, the assumption is that EWS endpoint is a SmartStruxure solution Enterprise Server

(ES).

The NuGet package provides an XML export file which should be imported into SmartStruxure solution

in order to properly execute the included sample code.

5.4 Running the Samples

The best way to exercise the sample code is by running the included unit test fixtures in NUnit. Fixture

specific instructions follow.

5.4.1.1 EwsClientFixture (Mongoose.Process.Sample)

This sample illustrates how to make EWS consume calls with the Ews.Client library that is included in

SmartConnector. While the creation of unique proxy references to EWS is possible, the use of the

references premade in the aforementioned library is encouraged.

http://stackoverflow.com/questions/3076807/vs-2010-nunit-and-the-breakpoint-will-not-currently-be-hit-no-symbols-have-b
http://stackoverflow.com/questions/3076807/vs-2010-nunit-and-the-breakpoint-will-not-currently-be-hit-no-symbols-have-b

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 14 of 30

In order to connect from the test fixture to the EWS server, first the UserName, Password, and

EwsEndpoint constants in this fixture must be modified to match the new system.

private const string EwsUrlEndpoint = "http://localhost:8081/EcoStruxure/DataExchange";

private const string EwsUsername = "TODO";

private const string EwsPassword = "TODO";

Once the connection information has been updated, the tests can be debugged to exercise the various

methods supported.

5.4.1.2 EwsConsumeFixture (Mongoose.Process.Sample)

SmartConnector includes many helpful abstractions to aid in developing processor classes. For EWS,

there are ValueItemReader, ValueItemWriter, HistoryItemReader,

AlarmItemReader , and SubscriptionReader to make calling EWS simpler from the code

writer’s perspective. As described above, once the processor is running SmartConnector will first

confirm that all declarative and semantic validation requirements are met. The programmer’s job is to

author SmartConnector Processors such that the declarations included meet validation requirements.

The ValidationTest in this fixture reviews how the processor code's validation can be tested prior

to being deployed.

Much like the SmartConnector Runtime, the tests in this fixture use a Processor Configuration to

instantiate a specific processor and load it with the data needed to perform the desired task. Prior to

executing the tests in this fixture, you must modify the connection information within the provided

configuration must so that SmartConnector can connect to the EWS endpoint.

Find the EwsConsumeConfiguration static method in the SampleConfigurations class and

review the Parameter definitions particular to the EWS server as shown below.

private const string EwsUrlEndpoint = "http://localhost:8081/EcoStruxure/DataExchange";

private const string EwsUsername = "TODO";

private const string EwsPassword = "TODO";

Once the connection information has been updated, the tests can be debugged to exercise the various

methods supported.

NOTE: these steps are required only when testing outside of the SmartConnector Runtime. When a

Processor is running in the service, this is all managed for you.

5.4.1.3 EwsServerAdapterFixture (Mongoose.Process.Sample)

When SmartConnector hosts an EWS Serve endpoint, the data served is stored in SmartConnector’s

database. Interacting with the database layer is best achieved through the

EwsServerDataAdapter class. This sample provides a quick jumpstart into it’s use.

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 15 of 30

NOTE: Before executing the tests in this fixture, please review and address all issues enumerated in

the class header comments. Special steps are required in order to run this Processor.

5.4.1.4 ProcessorValuesAccessProcessor (Mongoose.Process.Sample)

A Processor sub-class has access to the ProcessorValues data store. This example illustrates how to

search and save values.

NOTE: Before executing the tests in this fixture, please review and address all issues enumerated in

the class header comments. Special steps are required in order to run this Processor.

5.4.1.5 CustomEwsServeTestFixture (Mongoose.Ews.Server.Sample)

This sample illustrates how to introduce custom logic and handling into a standard SmartConnector EWS

serve implementation. In this example both the interface (INewDataExchange) and implementation

of one of the base methods (MyCustomGetValuesProcessor) are overridden.

While this example is not actually hosted by SmartConnector (so it can be debugged easily), it does

demonstrate that even though the logic has been modified, the standard SmartConnector EwsClient

library has no issues consuming the known interface. If you wish to call interface extensions, you need

to create a new proxy that includes additional methods and other constructs.

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 16 of 30

6 Writing Your Code

6.1 Solution Structure

While using the examples described is one way to begin authoring extensions, combining Processors and

Unit Test Fixtures in the same class assembly project is not recommended for actual Extension

development. It is recommended that the class assembly project you will deploy contains only the

necessary classes and references. Listed below are the steps you need to perform when starting a new

project.

6.2 Processors

1. Create a Visual Studio Class Library project using your preferred development language.

2. Create a reference to the Mongoose.Process NuGet package. Other SmartConnector NuGet

packages can be added as needed.

3. Add a new class. Consistent naming convention is encouraged; Processor name should end with

the word “Processor” eg “MyCustomProcessor”.

4. Have the Processor sub-class the Mongoose.Process.Processor class.

5. Override the Execute_Subclass method. In this method the logic intended to be executed

should be added when the processor runs.

6. If you wish to not require a license in order to execute this Proce ssor, override the

IsLicensed property and return false. See Licensing for more information about the specific

features of Extension licenses.

7. Add properties needed to execute the custom logic. These properties should be public and have

public getters and setters. Standard .NET validation attributes can be used to decorate these

properties. See Microsoft Developer Network (http://msdn.microsoft.com/en-

us/library/system.componentmodel.dataannotations.aspx) for details. By default all public

read/write properties are available for configuration. If a property is not needed for

configuration purposes, you can add the ConfigurationIgnore attribute to indicate this.

6.2.1 Execute_Subclass

The main entry point for the custom logic resides in this method. The return type is a list of Prompt

instances that can be used to indicate any messages to be conveyed to the Worker as part of the results.

Presently, these are only used for logging purposes. If no messaging is to be conveyed, then an empty

list should be returned.

Loops in your Processor code are expected. Well written Processor code must still be responsive to

external input from users, the operating system, or the Worker Manager in the way of a “stop” request.

To achieve this, the base class has a CancellationToken property that is managed by the

SmartConnector Runtime. Processor authors must monitor this if loop constructs of any type are

present – even if they are “short” loops. This can be done in two different ways:

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.aspx

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 17 of 30

6.2.1.1 CheckCancellationToken()

CallingCheckCancellationToken() at either the top or bottom of any loop is one way to honor a

stop request. This approach should only be used if an uncontrolled and immediate termination of the

method is acceptable as it will cause a TaskCancelledException to be thrown if a stop request is

pending. SmartConnector will call the virtual CleanupBeforeCancellation method prior to

throwing the exception if cleanup of any type is required.

6.2.1.2 IsCancellationRequested

If a controlled exit is preferred, the IsCancellationRequested property can be used to

determine if a stop is pending. The method should then terminate as soon as possible after performing

any required actions.

6.2.2 Validation

Because SmartConnector is highly configurable, validation of the state of the Processor – loaded from a

Processor Configuration – is critical. Processor validation is based on the .NET Validator class and does

both schematic (attribute based) and semantic (interface based) validation. SmartConnector enhances

the .NET experience by performing a deep graph traversal and validating the entire Processor instance.

Any ITraversable or IEnumerable will be traversed during validation. Since Processor implements

ITraverseable, the validation of all of the Processor’s child properties is guaranteed.

6.2.2.1 Schematic Validation

Schematic validation is based on attributes which will be used to indicate what properties are required,

ranges of acceptable values, and other declarative methods. Any ValidationAttribute subclass can be

used whether it is native to .NET or authored by outside sources to add custom attribute-based

validation.

The SmartConnector framework provides the following ValidationAttribute sub-classes to aid in

validation.

6.2.2.1.1 CollectionLength

This attribute specifies the minimum and/or maximum number of items that can be in any IEnumerable

construct.

6.2.2.2 Semantic Validation

Semantic validation is based on the IValidatableObject interface which Processor implements.

”Semantic” refers to the type of validation which is beyond the obvious schematic-based validation

where context is required. For example, consider a Processor that has two properties but only one or

the other is required; never both. Clearly, adding the Required attribute to both (or neither) would fail

to accomplish the desired validation result. However, overriding the Validate method on

IValidatable allows one to perform that type of contextual validation to ensure that one and only

one value was supplied.

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.validator(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.collections.ienumerable.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.validationattribute(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.ivalidatableobject.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.requiredattribute.aspx

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 18 of 30

6.2.3 Other Interfaces

Other interfaces are available for use in the SmartConnector libraries. Some of these interfaces also

provide functionality in the form of extension methods which are contained in the SmartConnector

libraries while others are simply used to identify behavior.

6.2.3.1 ITraversable

Any class decorated as ITraverseable will allow graph traversal by the ObjectExaminer class

for deep analysis. This is specifically used for Validation and to extract a Processor Configuration. If

custom class constructs are added to a Processor which will require exposure via the configuration

engine, you need to decorate those classes with this interface so that child properties will be exposed.

6.2.3.2 ILongRunningProcess

A Processer should perform its work as efficiently as possible and terminate. This will allow the finite

number of Workers available to be reused as other Processors need to be executed. It is understood

that sometimes a Processor can’t be written in such a manner. For example, if the processor is

communicating with a third party system by opening a socket and “listening” for traffic it may need to

do so for an indefinite amount of time before exiting.

For cases like this, the interface ILongRunningProcess should be used to assure the

SmartConnector Runtime that the Processor has not become unresponsive or stuck in an infinite loop.

Failure to do so may cause the Worker Manager to terminate the Process because it has become

unresponsive.

6.2.3.3 IEwsEndpoint

The IEwsEndpoint defines the properties needed to connect to a EWS Server. Extension methods

exist to instantiate a EwsClient instance based on the credentials of an implementing class.

SmartConnector’s native EWS readers and writers use this interface.

6.2.3.4 IStaThreadedProcessor

If a Processor contains references to COM assemblies the Processor may be required to execute in an

STA thread. To instruct the Worker Manager to handle threading using STA threads, the author should

include the sub-class directive for this interface.

6.2.4 Other Attributes

Other attributes are available for use in the SmartConnector libraries.

6.2.4.1 ConfigurationIgnore

Processor properties with this attribute will be ignored by SmartConnector for the purposes of

configuration and will not be displayed to the user in the Portal.

6.2.4.2 DefaultValue

The DefaultValueAttribute is part of the .NET framework (System.ComponentModel). It is enumerated

here since SmartConnector supports its use during Processor Configuration creation if a public property

of the Processor class is decorated with it.

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 19 of 30

6.2.4.3 RandomStringDefaultValue

SmartConnector includes a sub-class of the System.ComponentModel.DefaultValueAttribute which will

generate a random string value rather than one the extension author defines.

6.2.4.4 ProcessConfigurationDefaults

When attributed to a Mongoose.Process.Processor sub-class, newly created ProcessConfigurations will

automatically populate the Name and Description of the ProcessConfiguration with the supplied values.

6.2.4.5 Tooltip

A Processor author can decorate any configurable property with the Tooltip attribute. The contents of

the “tip” will be rendered in the SmartConnector Portal when the user clicks on the icon. This can be

useful to provide context based instructions and guidance to Portal users.

6.3 EWS Servers

One way to begin authoring a unique EWS Serve implementation is to use the

Mongoose.Ews.Server.Sample project as a starting point. Listed below are the steps you need to

perform when starting a new project.

1. Create a Visual Studio Class Library project using any language preferred.

2. Create a reference to the Ews.Server.Contract and Mongoose.Ews.Server NuGet packages.

Other SmartConnector NuGet packages can be added as needed.

3. Add a service class which sub-classes MongooseDataExchange.

4. If you want to modify the default behavior for one of the implementation classes:

a. Add a class for each method you want to override. For example, in the sample NuGet,

MyCustomGetValuesProcessor sub-classing

MongooseGetValuesProcessor was added.

b. For each class added in step a, override the create processor method in the service class

added in step 2 and return your new class.

5. If you wish to extend the interface to add new methods and/or data structures:

a. Add a new interface which sub-classes IDataExchange.

b. Add your methods to this interface.

c. Modify the service class created in step 3 to also sub-class this interface.

d. Implement any methods in the service class.

6.4 Licensing

SmartConnector supports licensing of Processor and EWS Server Extension Assemblies. License files are

created and managed in your Tenant on www.smartconnectorserver.com. Once generated, a license is

immutable. Additionally, once a license is added to the SmartConnector runtime, the data cannot be

altered even though it is stored in the internal database. Any edits to either the physical file or the

database license fields will render the license unusable.

Licenses can be created with the following restrictions. Multiple restrictions will behave in a logical

“OR” fashion:

https://www.smartconnectorserver.com/

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 20 of 30

 Time based licensing. License will expire at an absolute date in the future.

 Machine based licensing. Licenses can be generated that allow code to run on only a specific

machine.

 Version based licensing. Licenses can be generated that will only allow specific versions of the

extension assembly to execute.

 Custom defined features. Licenses can be generated with custom features that are enforced at

run time from the Extension itself. See Custom Licensing for more details.

6.4.1 Licensing your Extension

To license your extension, you only need to annotate your AssemblyInfo file with the PublicKey

attribute with the corresponding “Public Key” value from the www.smartconnectorserver.com

extension you created for your assembly as shown in Figure 6. See

https://www.smartconnectorserver.com/Faq for instructions on how to create an “Extension” to

represent your Extension Assembly.

Figure 6: Extension Public Key Annotation

6.4.2 Opting Out

By default, all Processor sub-classes in any Extension assembly will require a license in order to execute.

Additionally, all EwsServiceHost sub-classes in any Extension assembly will require a license. In order to

“opt out” of license enforcement for any Processor or EwsServiceHost, you must override

IsLicensed in your and return false. Processor Extension assemblies can contain a mix of licensed

and unlicensed Processors. If no Processor classes in your assembly are IsLicensed then the

PublicKey attribute described above is not required. The same is true if the EwsServiceHost sub-class

is not to be licensed.

6.4.3 Custom Licensing

Custom license features can be used to provide highly granular control of specific aspects of the

Extension itself. Custom license features are represented as a Dictionary of string values. For the

majority of scenarios, this should suffice. However, if more complicated design scenarios are required,

you can store a serialized object in the value and deserialize it at runtime.

Enforcement of the custom licensing features is the responsibility of the Extension author. This

enforcement is accomplished by overriding the Processor.

http://www.smartconnectorserver.com/
https://www.smartconnectorserver.com/Faq

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 21 of 30

ValidateCustomLicenseFeatures method and returning the appropriate Prompt instance in

the response. An example for the LicensedNullProcessor is shown below. The custom license

feature in this example is called “MaxSleep” and represents the maximum allowed sleep value which the

Processor can be configured for. By deferring this validation from design time (using attribute

validation) to runtime, different customers can operate the same Processor under different

constraints.

protected override IEnumerable<Prompt> ValidateCustomLicenseFeatures (ExtensionLicense license)

{

 var baseResults = new List<Prompt>();

 baseResults.AddRange(base.ValidateLicense(license));

 var maxSleep = license.Features.FirstOrDefault(x => x.Key == "MaxSleep");

 if (!string.IsNullOrEmpty(maxSleep.Value))

 {

 int asSleep;

 if (int.TryParse(maxSleep.Value, out asSleep))

 {

 if (SleepDuration > asSleep)

 {

 baseResults.Add(new Prompt

 {

 Message = string.Format("You are not licensed to use a SleepDuration value greater than {0}",

 maxSleep.Value),

 Severity = PromptSeverity.MayNotContinue

 });

 }

 }

 }

 return baseResults;

}

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 22 of 30

7 Annotating Your Assemblies
The Portal displays assembly information for a Configuration or EWS Server to the user on both the

Configuration and EWS Server pages. Additionally, this information is displayed during step one of the

Add Configuration and Add EWS Server workflows. The following fields are displayed:

 Class Name – The class name of the Processor or ServiceHost sub-class.

 Assembly File Name – The file name of the extension assembly.

 Assembly Description – Value of the AssemblyInfo.AssemblyDescription for the assembly.

 Assembly Company – Value of the AssemblyInfo.AssemblyCompany for the assembly.

 Assembly Copyright – Value of the AssemblyInfo. AssemblyCopyright for the assembly.

 Assembly Version – Value of the AssemblyInfo.AssemblyCompany for the assembly.

As an extension author, you are encouraged to enter information specific to your business unit. The

information displayed here is invaluable for users which may be troubleshooting the extension.

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 23 of 30

8 Testing Your Code
A test-driven development approach is strongly encouraged when developing extension libraries for

SmartConnector. The samples illustrate a minimal approach to doing this. The developer should decide

the exact amount of testing that needs to be performed prior to solution development. A NuGet

package is provided to you to help facilitate test creation. Follow the instructions outlined in the Sample

NuGet Packages above and chose the Mongoose.Process.Test package to download useful extension

methods for your tests.

http://en.wikipedia.org/wiki/Test-driven_development

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 24 of 30

9 Deploying Your Code
As you are developing in .NET, deploying the class library is very straightforward. Simply copy the binary

output preferably generated from a Release configuration, into the same folder location that the

SmartConnector Service was installed to. If the class library has external references that are not part of

the SmartConnector core, then those dependencies should also be copied.

SmartConnector native libraries that were installed into the class library via NuGet should NOT be

copied.

9.1 Strong-Named Assemblies

Beginning with the 2.0 release, all SmartConnector binaries are Strong-Named Assemblies. As a result,

all Extension assemblies written prior to 2.0 must be re-compiled against SmartConnector 2.0 or later.

Otherwise an exception will be thrown when the SmartConnector framework attempts to load an

assembly.

This requirement is true regardless of whether or not you strongly name your Extension assembly or

whether or not you incorporate licensing requirements into your Extension assembly.

However, once an extension has been re-compiled against SmartConnector 2.0 or later, it is likely that it

will not have to be re-compiled against future SmartConnector versions so long as they are backward

compatible.

See the Troubleshooting section in the SmartConnector Installation and Configuration Guide for more

details.

9.2 Updating Extension Assemblies

Updating Extension assemblies after initial deployment is performed in the same manner as initial

deployment. If the Extension being updated was being used, the .NET framework will put a file lock on

the DLL which will prevent it from being overwritten. While workarounds are being considered,

presently you will need to stop the SmartConnector Server prior to updating your Extension assemblies

https://msdn.microsoft.com/en-us/library/wd40t7ad%28v=vs.110%29.aspx

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 25 of 30

10 Appendix

10.1 OData API

Open Data Protocol (OData) is a data access protocol initially defined by Microsoft (through version 3.0)

but later standardized by OASIS (version 4.0 and later). SmartConnector currently conforms to the

OData v3.0 specification.

You will need to be familiar with the specification in order to consume the API. Please consult the

OData web site for information regarding the specification. http://www.odata.org/

10.1.1 Authentication

SmartConnector requires authentication for the all interactions with the API. SmartConnector

authentication is done via OAuth2 against a local user store. Future versions will include Active

Directory and third party identity support. Refer to the “SmartConnector Installation and Configuration

Guide” for information about the default credentials installed and user management.

Before calling an authenticated endpoint, API clients will need to obtain a Bearer Token by issuing an

HTTP POST to the Token endpoint and supplying the credentials as shown in Figure 7.

Figure 7: Authentication Bearer Token Request

If you do not wish to construct your own HTTP request, SmartConnector provides the BearerToken

static helper class in the Mongoose.Common.Security namespace to facilitate retrieval of a Bearer

Token.

http://www.odata.org/

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 26 of 30

NOTE: The Bearer Token request occurs in plain text if the SmartConnector Service is not configured for

HTTPS. Consult the Security Considerations section of the SmartConnector Installation and

Configuration Guide.

Once a Bearer Token has been obtained, subsequent requests need to include an “Authorization”

header with the value of “Bearer BEARER_TOKEN_VALUE”.

Bearer tokens are useable for 15 minutes from issuance. After that time a new bearer token is required.

10.1.2 What you can do with the API

Typical use for the API is for CRUD operations. Not all controllers support full CRUD operations. The

table below enumerates the available controllers and what CRUD actions are supported by each

controller. When working with the API, please be advised of the security considerations section listed in

the SmartConnector Installation and Configuration Guide.

10.1.2.1 CRUD Operations

Controller Name Description C R U D

EwsServerRequests Requests to start or stop an EWS Server X

EwsServers Logical EWS Servers X X
LogFilters Entries to limit the amount of logging perfomed X X X X

Parameters Configuration Parameters of either a ParameterSet or
ProcessConfiguration.

X X X X

ParameterSets Configuration ParameterSets of either a ParameterSet or
ProcessConfiguration.

X X X X

ProcessConfigurations Configuration to run a Processor with an optional Schedule
with all of the defining properties to instantiate and hydrate
the class that will be executed.

X X X X

ProcessorValues Persistent data store for Processors to store state data. X X X X

ProcessRequests Requests to start or stop a Process Configuration. X X
Schedules Schedule definitions for how often a Process Configuration

will run.
X X X X

Settings Service settings. X X
ThreadStates Status information on what the current SmartConnector

Service is working on.
 X

10.1.2.2 Custom Actions

In addition to the standard CRUD actions defined above some controllers have custom actions. The

following enumerates those custom actions and the parameters (if any) required.

Only those controllers listed have custom actions.

Controller Name Action HTTP
Verb

Parameters

EwsServerRequests Purge POST n/a

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 27 of 30

EwsServers Start POST id: Id of the EWS Server to start.
Stop POST id: Id of the EWS Server to stop.

CreateNew POST name: name of the server
address: complete url of the endpoint.
realm: realm for digest authentication
username: username to authenticate with
password: password to authenticate with
isAutoStart: Server will auto start at
service start
assemblyFile: Name of host class
assembly
className: Name of the host class in
assemblyFile

ParametersController Decrypt POST id: Id of the Parameter to decrypt.

ParameterSetController CreateCollectionItem POST id: Id of the ParameterSet to create a new
child for.

ProcessRequests Purge POST Deletes all non-pending requests.

ProcessConfigurations Start POST id: Id of the ProcessConfiguration to start

Stop POST id: Id of the ProcessConfiguration to stop
Clone POST id: Id of the ProcessConfiguration to clone

Schedule POST id: Id of the ProcessConfiguration to
schedule.
scheduleId: ID of the Schedule to assign to
the ProcessConfiguration.

Unschedule POST id: Id of the ProcessConfiguration to
unscheduled

CreateNew POST name: Name of the Processor.
description: Description of the Processor.
assemblyFile: Name of the Processor class
assembly
className: Nave of the Processor class.

ProcessRequests Purge POST Deletes all non-pending requests.

10.1.3 Other Controllers

In addition to the OData compliant controllers mentioned above, the following conventional Web API

controllers are also available.

Controller Name Route HTTP
Verb

Purpose

Ping Get GET An unauthenticated endpoint to confirm that the service
is responding.

Error GET Returns an error to test client handling of the types of
runtime exceptions which SmartConnector may return.

Info Get GET Returns runtime information about the version of the
SmartConnector Service. Requires authentication.

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 28 of 30

10.2 Third Party Tools

In general, any programming language that can issue HTTP requests can be used to consume the API.

However, for simple testing purposes there are some free applications available that make the job much

easier.

10.2.1 Fiddler

Probably the best freeware tool available to debug and manipulate HTTP requests is Fiddler

(http://www.telerik.com/fiddler). The web is full of tutorials, tips, and tricks on how to use Fiddler so

we will not duplicate that content here.

10.2.2 LINQPad

LINQPad (http://www.linqpad.net) is a freeware application (premium version also available) that

makes writing Language Integrated Queries (LINQ) easy. One of the features of LINQPad is the ability to

consume WCF Data Services which makes consuming the API quick and easy for querying purposes.

To connect LINQPad to SmartConnector perform the following.

1. Open LINQPad.

2. Click Add connection.

3. In the dialog choose WCF Data Services 5.5 (OData3)

4. Click Next

5. Enter the endpoint of the SmartConnector OData API.

At this point, the connection dialog will look like Figure 8 .

Figure 8: LINQPad Connection Properties

http://www.telerik.com/fiddler
http://www.linqpad.net/

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 29 of 30

LINQPad doesn’t support OAuth handshaking so we are not able to use the “User name” and

“Password” inputs. In order to use LINQPad with SmartConnector, we will need to manually add a

custom header with a valid bearer token (see Authentication).

6. Click Custom Headers.

7. In the Name column enter “Authorization”.

8. In the Value column enter “Bearer VALUE_OF_THE_BEARER_TOKEN”.

9. Click OK.

10. Click OK.

Figure 9: LINQPad Custom Headers

You are now ready to queries against SmartConnector’s OData API.

10.3 Supported Operating Systems

The following is a list of Operating Systems which SmartConnector has been tested against. Non-listed

operating systems capable of running .NET 4.5 should also work but their compatibility has not been

verified.

 Windows 7 64 bit.

 Windows 10 64 bit.

 Windows Server 2008 64 bit.

 Windows Server 2012 64 bit.

10.4 Supported Database Servers

The following is a list of Microsoft SQL Servers which SmartConnector has been tested against. Non-

listed servers compliant with Microsoft SQL Server may also work but their compatibility is not

guaranteed.

SmartConnector Developers Guide

Document : Revision Revision date Page

TDS-M-DEVGUIDE-US.BU.N.EN.04.2016.2.10.CC 4 4/5/2016 Page 30 of 30

 Local DB.

 Microsoft SQL Server 2012 Express.

 Microsoft SQL Server 2012.

 Microsoft SQL Server 2014 Express.

 Microsoft SQL Server 2014.

